File size: 9,857 Bytes
cd2355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import pandas as pd
import random
import time 

from info.train_a_model import (
    LLM_BENCHMARKS_TEXT)
from info.submit import (
    SUBMIT_TEXT)
from info.deployment import (
    DEPLOY_TEXT)
from info.programs import (
    PROGRAMS_TEXT)
from info.citation import(
    CITATION_TEXT)
from src.processing import filter_benchmarks_table, make_clickable

demo = gr.Blocks()

with demo:
    
    gr.HTML("""<h1 align="center" id="space-title">🤗Powered-by-Intel LLM Leaderboard 💻</h1>""")
    gr.Markdown("This leaderboard is designed to evaluate, score, and rank open-source large language \
        models that have been pre-trained or fine-tuned on Intel Hardware 🦾")
    gr.Markdown("Models submitted to the leaderboard are evaluated \
        on the Intel Developer Cloud ☁️")
    
    # TODO: Coming soon comparison tool
    #with gr.Accordion("🥊Large Language Model Boxing Ring 🥊", open=False):
    #    with gr.Row():
    #        chat_a = gr.Chatbot()
    #        chat_b = gr.Chatbot()
    #    msg = gr.Textbox()
    #    gr.ClearButton([msg, chat_a])
#
    #    def respond(message, chat_history):
    #        bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
    #        chat_history.append((message, bot_message))
    #        time.sleep(2)
    #        return "", chat_history
#
    #    msg.submit(respond, inputs = [msg, chat_a],outputs = [msg, chat_a]) 
        
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏆 LLM Benchmark", elem_id="llm-benchmark-table", id=0):
            with gr.Row():
                with gr.Column():
                    filter_hw = gr.CheckboxGroup(choices=["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"],
                                     label="Select Training Platform*",
                                     elem_id="compute_platforms",
                                     value=["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"])
                    filter_platform = gr.CheckboxGroup(choices=["Intel Developer Cloud","AWS","Azure","GCP","Local"],
                                     label="Training Infrastructure*",
                                     elem_id="training_infra",
                                     value=["Intel Developer Cloud","AWS","Azure","GCP","Local"])
                    filter_affiliation = gr.CheckboxGroup(choices=["No Affiliation","Intel Innovator","Intel Student Ambassador", "Intel Software Liftoff", "Intel Labs", "Other"],
                                     label="Intel Program Affiliation",
                                     elem_id="program_affiliation",
                                     value=["No Affiliation","Intel Innovator","Intel Student Ambassador", "Intel Software Liftoff", "Intel Labs", "Other"])
                    
                with gr.Column():
                    filter_size = gr.CheckboxGroup(choices=[1,3,5,7,13,35,60,70,100],
                                     label="Model Sizes (Billion of Parameters)",
                                     elem_id="parameter_size",
                                     value=[1,3,5,7,13,35,60,70,100])
                    filter_precision = gr.CheckboxGroup(choices=["fp8","fp16","bf16","int8","4bit"],
                                     label="Model Precision",
                                     elem_id="precision",
                                     value=["fp8","fp16","bf16","int8","4bit"])
                    filter_type = gr.CheckboxGroup(choices=["pretrained","fine-tuned","chat-models","merges/moerges"],
                                     label="Model Types",
                                     elem_id="model_types",
                                     value=["pretrained","fine-tuned","chat-models","merges/moerges"])
                    
            initial_df = pd.read_csv("leaderboard_status_030424.csv")
            
            gradio_df_display = gr.Dataframe()
            
            def update_df(hw_selected, platform_selected, affiliation_selected, size_selected, precision_selected, type_selected):
                filtered_df = filter_benchmarks_table(df=initial_df, hw_selected=hw_selected, platform_selected=platform_selected, 
                                                      affiliation_selected=affiliation_selected, size_selected=size_selected, 
                                                      precision_selected=precision_selected, type_selected=type_selected)
                return filtered_df
            
            filter_hw.change(fn=update_df, 
                             inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type], 
                             outputs=[gradio_df_display])
            filter_platform.change(fn=update_df, 
                                inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type], 
                                outputs=[gradio_df_display])
            filter_affiliation.change(fn=update_df, 
                                inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type], 
                                outputs=[gradio_df_display])
            filter_size.change(fn=update_df, 
                               inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type], 
                               outputs=[gradio_df_display])
            filter_precision.change(fn=update_df, 
                                inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type], 
                                outputs=[gradio_df_display])
            filter_type.change(fn=update_df, 
                               inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type], 
                               outputs=[gradio_df_display])
        
            
        with gr.TabItem("🧰 Train a Model", elem_id="getting-started", id=1):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
        with gr.TabItem("🚀 Deployment Tips", elem_id="deployment-tips", id=2):
            gr.Markdown(DEPLOY_TEXT, elem_classes="markdown-text")
        with gr.TabItem("👩‍💻 Developer Programs", elem_id="hardward-program", id=3):
            gr.Markdown(PROGRAMS_TEXT, elem_classes="markdown-text")
        with gr.TabItem("🏎️ Submit", elem_id="submit", id=4):
            gr.Markdown(SUBMIT_TEXT, elem_classes="markdown-text")
            with gr.Row():
                gr.Markdown("# Submit Model for Evaluation 🏎️", elem_classes="markdown-text")
            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=["pretrained","fine-tuned","chat models","merges/moerges"],
                        label="Model type",
                        multiselect=False,
                        value="pretrained",
                        interactive=True,
                    )
                    
                    hw_type = gr.Dropdown(
                        choices=["Gaudi","Xeon","GPU Max","Arc GPU"],
                        label="Training Hardware",
                        multiselect=False,
                        value="Gaudi2",
                        interactive=True,
                    )
                    terms = gr.Checkbox(
                        label="Check if you have read and agreed to terms and conditions associated with submitting\
                            a model to the leaderboard.",
                        value=False,
                        interactive=True,
                    )
                with gr.Column():
                    precision = gr.Dropdown(
                        choices=["fp8","fp16","bf16","int8","4bit"],
                        label="Precision",
                        multiselect=False,
                        value="fp16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=["Original", "Adapter", "Delta"],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    training_infra = gr.Dropdown(
                        choices=["IDC","AWS","Azure","GCP","Local"],
                        label="Training Infrastructure",
                        multiselect=False,
                        value="IDC",
                        interactive=True,
                    )
                    affiliation = gr.Dropdown(
                        choices=["No Affiliation","Innovator","Student Ambassador","Intel Liftoff", "Intel Labs", "Other"],
                        label="Affiliation with Intel",
                        multiselect=False,
                        value="Independent",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
                
            #submit_button = gr.Button("Submit Eval")
            #submission_result = gr.Markdown()
            gr.Markdown("Community Submissions Coming soon!")
            
    with gr.Accordion("📙 Citation", open=False):
            citation =gr.Textbox(value = CITATION_TEXT,
                                 lines=6,
                                 label="Use the following to cite this content")
            
    
demo.launch()