File size: 6,487 Bytes
cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
DEPLOY_TEXT = f"""
# ๐ Deployment Tips
A collection of powerful models is valuable, but ultimately, you need to be able to use them effectively.
This tab is dedicated to providing guidance and code snippets for performing inference with leaderboard models on Intel platforms.
Below, you'll find a table of open-source software options for inference, along with the supported Intel Hardware Platforms.
A ๐ indicates that inference with the associated software package is supported on the hardware. We hope this information
helps you choose the best option for your specific use case. Happy building!
<div style="display: flex; justify-content: center;">
<table border="1">
<tr>
<th>Inference Software</th>
<th>Gaudi</th>
<th>Xeon</th>
<th>GPU Max</th>
<th>Arc GPU</th>
<th>Core Ultra</th>
</tr>
<tr>
<td>Optimum Habana</td>
<td>๐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Extension for PyTorch</td>
<td></td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td></td>
</tr>
<tr>
<td>Intel Extension for Transformers</td>
<td></td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td></td>
</tr>
<tr>
<td>OpenVINO</td>
<td></td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
</tr>
<tr>
<td>BigDL</td>
<td></td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
</tr>
<tr>
<td>NPU Acceleration Library</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>๐</td>
</tr>
</tr>
<tr>
<td>PyTorch</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
</tr>
</tr>
<tr>
<td>Tensorflow</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
<td>๐</td>
</tr>
</table>
</div>
<hr>
# Intelยฎ Gaudi Accelerators
Habana's SDK, Intel Gaudi Software, supports PyTorch and DeepSpeed for accelerating LLM training and inference.
The Intel Gaudi Software graph compiler will optimize the execution of the operations accumulated in the graph
(e.g. operator fusion, data layout management, parallelization, pipelining and memory management,
and graph-level optimizations).
Optimum Habana provides covenient functionality for various tasks, below you'll find the command line
snippet that you would run to perform inference on Gaudi with meta-llama/Llama-2-7b-hf.
The "run_generation.py" script below can be found [here](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation)
```bash
python run_generation.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--use_hpu_graphs \
--use_kv_cache \
--max_new_tokens 100 \
--do_sample \
--batch_size 2 \
--prompt "Hello world" "How are you?"
```
<hr>
# Intelยฎ Max Series GPU
### INT4 Inference (GPU)
```python
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer
device_map = "xpu"
model_name ="Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "When winter becomes spring, the flowers..."
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
device_map=device_map, load_in_4bit=True)
model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)
output = model.generate(inputs)
```
<hr>
# Intelยฎ Xeon CPUs
### Intel Extension for PyTorch - Optimum Intel (no quantization)
Requires installing/updating optimum `pip install --upgrade-strategy eager optimum[ipex]
`
```python
from optimum.intel import IPEXModelForCausalLM
from transformers import AutoTokenizer, pipeline
model = IPEXModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
results = pipe("A fisherman at sea...")
```
### Intelยฎ Extension for PyTorch - Mixed Precision (fp32 and bf16)
```python
import torch
import intel_extension_for_pytorch as ipex
import transformers
model= transformers.AutoModelForCausalLM(model_name_or_path).eval()
dtype = torch.float # or torch.bfloat16
model = ipex.llm.optimize(model, dtype=dtype)
# generation inference loop
with torch.inference_mode():
model.generate()
```
### Intelยฎ Extension for Transformers - INT4 Inference (CPU)
```python
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
model_name = "Intel/neural-chat-7b-v3-1"
prompt = "When winter becomes spring, the flowers..."
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True)
outputs = model.generate(inputs)
```
<hr>
# Intelยฎ Core Ultra (NPUs and iGPUs)
### Intelยฎ NPU Acceleration Library
```python
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM
import intel_npu_acceleration_library
import torch
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
model = AutoModelForCausalLM.from_pretrained(model_id, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
print("Compile model for the NPU")
model = intel_npu_acceleration_library.compile(model, dtype=torch.int8)
query = input("Ask something: ")
prefix = tokenizer(query, return_tensors="pt")["input_ids"]
generation_kwargs = dict(
input_ids=prefix,
streamer=streamer,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=512,
)
print("Run inference")
_ = model.generate(**generation_kwargs)
```
### OpenVINO Toolking with Optimum Habana
```python
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline
model_id = "helenai/gpt2-ov"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
pipe("In the spring, beautiful flowers bloom...")
```
<hr>
# Intel ARC GPUs
Coming Soon!
""" |