File size: 6,243 Bytes
cd2355c
 
278fc7f
 
 
 
 
7645d86
278fc7f
 
 
 
 
 
 
5e1823c
 
 
 
 
278fc7f
 
8d9ad4b
278fc7f
 
 
 
 
 
8d9ad4b
5e1823c
278fc7f
 
 
 
 
 
 
8d9ad4b
278fc7f
 
 
 
 
 
 
 
 
 
 
867b5a3
8d9ad4b
867b5a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7645d86
 
 
 
ad676d5
7645d86
 
 
cd2355c
 
 
 
 
 
 
 
 
 
 
278fc7f
7645d86
cd2355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fc7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9ad4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fc7f
 
8d9ad4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad676d5
8d9ad4b
7645d86
 
278fc7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867b5a3
7645d86
278fc7f
7645d86
cd2355c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
DEPLOY_TEXT = f"""

# 🚀 Deployment Tips

A collection of powerful models is valuable, but ultimately, you need to be able to use them effectively. 
This tab is dedicated to providing guidance and code snippets for performing inference with leaderboard models on Intel platforms.

Below is a table of open-source software options for inference, along with the supported Intel hardware platforms. 
A 🚀 indicates that inference with the associated software package is supported on the hardware. We hope this information 
helps you choose the best option for your specific use case. Happy building!

<div style="display: flex; justify-content: center;">
<table border="1">
  <tr>
    <th>Inference Software</th>
    <th>Gaudi</th>
    <th>Xeon</th>
    <th>GPU Max</th>
    <th>Arc GPU</th>
    <th>Core Ultra</th>
  </tr>
  </tr>
    <td>PyTorch</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
  </tr>
    <tr>
    <td>OpenVINO</td>
    <td></td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
  </tr>
  <tr>
    <td>Hugging Face</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
    <td>🚀</td>
  </tr>
</table>
</div>

<hr>

# Intel® Gaudi® Accelerators
Gaudi is Intel's most capable deep learning chip. You can learn about Gaudi [here](https://habana.ai/products/gaudi2/).

👍[Optimum Habana GitHub](https://github.com/huggingface/optimum-habana)

The "run_generation.py" script below can be found [here on GitHub](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation)

```bash
python run_generation.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--use_hpu_graphs \
--use_kv_cache \
--max_new_tokens 100 \
--do_sample \
--batch_size 2 \
--prompt "Hello world" "How are you?"

```

<hr>

# Intel® Xeon® CPUs

### Optimum Intel and Intel Extension for PyTorch (no quantization)
🤗 Optimum Intel is the interface between the 🤗 Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.

👍 [Optimum Intel GitHub](https://github.com/huggingface/optimum-intel)

Requires installing/updating optimum `pip install --upgrade-strategy eager optimum[ipex]`

```python
from optimum.intel import IPEXModelForCausalLM
from transformers import AutoTokenizer, pipeline

model = IPEXModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
results = pipe("A fisherman at sea...")
```

### Intel® Extension for PyTorch - Mixed Precision (fp32 and bf16)

```python
import torch
import intel_extension_for_pytorch as ipex
import transformers

model= transformers.AutoModelForCausalLM(model_name_or_path).eval()

dtype = torch.float # or torch.bfloat16
model = ipex.llm.optimize(model, dtype=dtype)

# generation inference loop
with torch.inference_mode():
    model.generate()
```

### Intel® Extension for Transformers - INT4 Inference (CPU)
```python
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
model_name = "Intel/neural-chat-7b-v3-1"     
prompt = "When winter becomes spring, the flowers..."

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids

model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True)
outputs = model.generate(inputs)


```

<hr>

# Intel® Max Series GPU

### INT4 Inference (GPU) with Intel Extension for Transformers and Intel Extension for PyTorch
👍 [Intel Extension for PyTorch GitHub](https://github.com/intel/intel-extension-for-pytorch)

```python
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer

device_map = "xpu"
model_name ="Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "When winter becomes spring, the flowers..."
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)

model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
                                              device_map=device_map, load_in_4bit=True)

model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)

output = model.generate(inputs)
```

<hr>

# Intel® Core Ultra (NPUs and iGPUs)

### OpenVINO Tooling with Optimum Intel

👍 [OpenVINO GitHub](https://github.com/openvinotoolkit/openvino)

```python
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline

model_id = "helenai/gpt2-ov"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

pipe("In the spring, beautiful flowers bloom...")

```

### Intel® NPU Acceleration Library
👍 [Intel NPU Acceleration Library GitHub](https://github.com/intel/intel-npu-acceleration-library)

```python
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM
import intel_npu_acceleration_library
import torch

model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"

model = AutoModelForCausalLM.from_pretrained(model_id, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

print("Compile model for the NPU")
model = intel_npu_acceleration_library.compile(model, dtype=torch.int8)

query = input("Ask something: ")
prefix = tokenizer(query, return_tensors="pt")["input_ids"]

generation_kwargs = dict(
   input_ids=prefix,
   streamer=streamer,
   do_sample=True,
   top_k=50,
   top_p=0.9,
   max_new_tokens=512,
)

print("Run inference")
_ = model.generate(**generation_kwargs)
```

<hr>

# Intel® Arc GPUs
You can learn more about Arc GPUs [here](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/arc.html).

Code snippets coming soon!

"""