File size: 21,540 Bytes
0b39ee8 707efdb 5a5a36e c3c6a41 5a5a36e b9cb207 5a5a36e 503029a 5a5a36e b9cb207 5a5a36e b9cb207 5a5a36e b9cb207 228e920 b9cb207 5a5a36e b9cb207 5a5a36e b9cb207 5a5a36e b9cb207 5a5a36e c3c6a41 b9cb207 5a5a36e c3c6a41 5a5a36e b9cb207 228e920 5a5a36e b9cb207 5a5a36e b9cb207 c3c6a41 5a5a36e 0b39ee8 5a5a36e b9cb207 5a5a36e b9cb207 c3c6a41 5a5a36e b9cb207 5a5a36e b9cb207 5a5a36e b9cb207 c3c6a41 5a5a36e b9cb207 5a5a36e 2aa7f7b 5a5a36e 2aa7f7b 5a5a36e 2aa7f7b 49e6356 2aa7f7b 5a5a36e 228e920 5a5a36e 3df3fbb 0b39ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import os
os.system("pip install gradio==3.28.0 pydantic==1.10.15")
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio_space_ci import enable_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
NUMERIC_MODELSIZE,
TYPES,
AutoEvalColumn,
GroupDtype,
ModelType,
fields,
WeightType,
Precision,
ComputeDtype,
WeightDtype,
QuantType
)
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, REPO, GIT_REQUESTS_PATH, GIT_STATUS_PATH, GIT_RESULTS_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.scripts.update_all_request_files import update_dynamic_files
from src.tools.collections import update_collections
from src.tools.plots import (
create_metric_plot_obj,
create_plot_df,
create_scores_df,
)
# Start ephemeral Spaces on PRs (see config in README.md)
#enable_space_ci()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def init_space(full_init: bool = True):
if full_init:
try:
branch = REPO.active_branch.name
REPO.remotes.origin.pull(branch)
except Exception as e:
print(str(e))
restart_space()
try:
print(DYNAMIC_INFO_PATH)
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
raw_data, original_df = get_leaderboard_df(
results_path=GIT_RESULTS_PATH,
requests_path=GIT_STATUS_PATH,
dynamic_path=DYNAMIC_INFO_FILE_PATH,
cols=COLS,
benchmark_cols=BENCHMARK_COLS
)
# update_collections(original_df.copy())
leaderboard_df = original_df.copy()
plot_df = create_plot_df(create_scores_df(raw_data))
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(GIT_STATUS_PATH, EVAL_COLS)
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
def str_to_bool(value):
if str(value).lower() == "true":
return True
elif str(value).lower() == "false":
return False
else:
return False
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
params_query: list,
hide_models: list,
query: str,
compute_dtype: str,
weight_dtype: str,
double_quant: str,
group_dtype: str
):
compute_dtype = [compute_dtype]
weight_dtype = [weight_dtype]
if group_dtype == 'All':
group_dtype = [-1, 1024, 256, 128, 64, 32]
else:
try:
group_dtype = [int(group_dtype)]
except ValueError:
group_dtype = [-1]
double_quant = [str_to_bool(double_quant)]
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models, compute_dtype=compute_dtype, weight_dtype=weight_dtype, double_quant=double_quant, group_dtype=group_dtype, params_query=params_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
query = request.query_params.get("query") or ""
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
"""Added by Abishek"""
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, params_query:list, precision_query: list, hide_models: list, compute_dtype: list, weight_dtype: list, double_quant: list, group_dtype: list,
) -> pd.DataFrame:
# Show all models
if "Private or deleted" in hide_models:
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
else:
filtered_df = df
if "Contains a merge/moerge" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
if "MoE" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
if "Flagged" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_dtype.name].isin(weight_dtype)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.compute_dtype.name].isin(compute_dtype)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.double_quant.name].isin(double_quant)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.group_size.name].isin(group_dtype)]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
numeric_interval_params = pd.IntervalIndex(sorted([NUMERIC_MODELSIZE[s] for s in params_query]))
params_column_params = pd.to_numeric(df[AutoEvalColumn.model_size.name], errors="coerce")
mask_params = params_column_params.apply(lambda x: any(numeric_interval_params.contains(x)))
filtered_df = filtered_df.loc[mask_params]
return filtered_df
leaderboard_df = filter_models(
df=leaderboard_df,
type_query=[t.to_str(" : ") for t in QuantType],
size_query=list(NUMERIC_INTERVALS.keys()),
params_query=list(NUMERIC_MODELSIZE.keys()),
precision_query=[i.value.name for i in Precision],
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs,
compute_dtype=[i.value.name for i in ComputeDtype],
weight_dtype=[i.value.name for i in WeightDtype],
double_quant=[True, False],
group_dtype=[-1, 1024, 256, 128, 64, 32]
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
filter_columns_parameters = gr.CheckboxGroup(
label="Model parameters (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
with gr.Row():
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (GB, int4)",
choices=list(NUMERIC_MODELSIZE.keys()),
value=list(NUMERIC_MODELSIZE.keys()),
interactive=True,
elem_id="filter-columns-size",
)
with gr.Column(min_width=320):
#with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Quantization types",
choices=[t.to_str() for t in QuantType],
value=[t.to_str() for t in QuantType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
with gr.Box() as config:
gr.HTML("""<p style='padding-bottom: 0.5rem; color: #6b7280; '>Quantization config</p>""")
with gr.Row():
filter_columns_computeDtype = gr.Dropdown(choices=[i.value.name for i in ComputeDtype], label="Compute Dtype", multiselect=False, value="float16", interactive=True,)
filter_columns_weightDtype = gr.Dropdown(choices=[i.value.name for i in WeightDtype], label="Weight Dtype", multiselect=False, value="int4", interactive=True,)
filter_columns_doubleQuant = gr.Dropdown(choices=["True", "False"], label="Double Quant", multiselect=False, value=False, interactive=True)
filter_columns_groupDtype = gr.Dropdown(choices=[i.value.name for i in GroupDtype], label="Group Size", multiselect=False, value="All", interactive=True,)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
#column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
hide_models = gr.Textbox(
placeholder="",
show_label=False,
elem_id="search-bar",
value="",
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_parameters,
filter_columns_size,
hide_models,
search_bar,
filter_columns_computeDtype,
filter_columns_weightDtype,
filter_columns_doubleQuant,
filter_columns_groupDtype
],
leaderboard_table,
)
"""
# Define a hidden component that will trigger a reload only if a query parameter has been set
hidden_search_bar = gr.Textbox(value="", visible=False)
hidden_search_bar.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
hide_models,
search_bar,
],
leaderboard_table,
)
# Check query parameter once at startup and update search bar + hidden component
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
"""
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_parameters, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant, filter_columns_groupDtype]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_parameters,
filter_columns_size,
hide_models,
search_bar,
filter_columns_computeDtype,
filter_columns_weightDtype,
filter_columns_doubleQuant,
filter_columns_groupDtype
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
with gr.Column():
chart = create_metric_plot_obj(
plot_df,
[AutoEvalColumn.average.name],
title="Average of Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.Column():
chart = create_metric_plot_obj(
plot_df,
BENCHMARK_COLS,
title="Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("βFAQ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
with gr.Column():
"""
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="4bit",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightDtype],
label="Weights dtype",
multiselect=False,
value="int4",
interactive=True,
)
"""
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)",
visible=not IS_PUBLIC)
compute_type = gr.Dropdown(
choices=[i.value.name for i in ComputeDtype],
label="Compute dtype",
multiselect=False,
value="float16",
interactive=True,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
revision_name_textbox,
private,
compute_type,
],
submission_result,
)
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h
scheduler.add_job(update_dynamic_files, "interval", hours=12) # launched every 2 hour
scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()
demo.queue(concurrency_count=40).launch()
|