File size: 15,453 Bytes
8d763c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039d52f
8d763c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import gradio as gr
import torch
import cv2

### CAM explainer code from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools) ###
class XGradCAM:
    def __init__(self, model, targetLayer, targetClass, image, dims, device):

        # set any frozen layers to trainable
        # gradcam cannot be calculated without it
        for param in model.parameters():
            if not param.requires_grad:
                param.requires_grad = True

        self.model = model
        self.targetLayer = targetLayer
        self.targetClass = targetClass
        self.image = image
        self.dims = dims
        self.device = device

    def visualize(self):
        from pytorch_grad_cam import XGradCAM, GuidedBackpropReLUModel
        from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
        from pytorch_grad_cam.utils.image import show_cam_on_image, deprocess_image, preprocess_image
        import torch
        import cv2
        import numpy as np
        import matplotlib.pyplot as plt

        self.model.eval().to(self.device)

        image = cv2.resize(self.image, self.dims)
        # convert to rgb if image is grayscale
        converted = False
        if len(image.shape) == 2:
            converted = True
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)

        rgb_img = np.float32(image) / 255
        input_tensor = preprocess_image(rgb_img,
                                        mean=[0.485, 0.456, 0.406],
                                        std=[0.229, 0.224, 0.225])
        input_tensor = input_tensor.to(self.device)

        self.targetLayer = [self.targetLayer]

        if self.targetClass is None:
            targets = None
        else:
            targets = [ClassifierOutputTarget(self.targetClass)]

        cam = XGradCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available())

        # convert back to grayscale if that is the initial dim
        if converted:
            input_tensor = input_tensor[:, 0:1, :, :]

        grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False,
                            eigen_smooth=False)
        grayscale_cam = grayscale_cam[0, :]
        cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
        cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)

        gb_model = GuidedBackpropReLUModel(model=self.model, use_cuda=torch.cuda.is_available())
        gb = gb_model(input_tensor, target_category=None)
        cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
        cam_gb = deprocess_image(cam_mask * gb)
        gb = deprocess_image(gb)

        print("XGradCAM, Guided backpropagation, and Guided XGradCAM are generated. ")

        return cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)

class EigenCAM:
    def __init__(self, model, targetLayer, boxes, classes, colors, reshape, image, device):
        self.model = model
        self.targetLayer = targetLayer
        self.boxes = boxes
        self.classes = classes
        self.colors = colors
        self.reshape = reshape
        self.image = image
        self.device = device

    def visualize(self):
        from pytorch_grad_cam import EigenCAM
        from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image, scale_cam_image
        import torchvision
        import torch
        import cv2
        import numpy as np

        self.model.eval().to(self.device)

        rgb_img = np.float32(self.image) / 255
        transform = torchvision.transforms.ToTensor()
        input_tensor = transform(rgb_img)
        input_tensor = input_tensor.unsqueeze(0)
        input_tensor = input_tensor.to(self.device)

        self.targetLayer = [self.targetLayer]

        if self.reshape is None:
            cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available())
        else:
            cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available(),
                           reshape_transform=self.reshape)
        targets = []
        grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False,
                            eigen_smooth=False)
        grayscale_cam = grayscale_cam[0, :]
        cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)

        renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
        for x1, y1, x2, y2 in self.boxes:
            renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
        renormalized_cam = scale_cam_image(renormalized_cam)
        eigencam_image_renormalized = show_cam_on_image(rgb_img, renormalized_cam, use_rgb=True)
        for i, box in enumerate(self.boxes):
            color = self.colors[i]
            cv2.rectangle(
                eigencam_image_renormalized,
                (box[0], box[1]),
                (box[2], box[3]),
                color, 2
            )
            cv2.putText(eigencam_image_renormalized, self.classes[i], (box[0], box[1] - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
                        lineType=cv2.LINE_AA)

        print("EigenCAM is generated. ")

        return eigencam_image_renormalized

### For Gradio Demo ###
def xgradcam(image, model_code, target_class):
    global model, target_layer
    exec(model_code, globals())
    if target_class == "":
        target_class = None
    else:
        target_class = int(target_class)
    image_dims = (224, 224)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    xgradcam = XGradCAM(model, target_layer, target_class, image, image_dims, device)

    return xgradcam.visualize()

def eigencam(image, model_code, class_code, process_code, reshape_code):
    global input_image, model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape
    input_image = cv2.resize(image, (640, 640))
    exec(model_code, globals())
    exec(class_code, globals())
    exec(process_code, globals())
    exec(reshape_code, globals())
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    eigencam = EigenCAM(model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape, input_image, device)

    return eigencam.visualize()

with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Class Activation Mapping (CAM) Explainer Demo
        This is a demo for CAM explainer from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools). \
        CAM is an approach which localizes regions in the image responsible for a class prediction. \
        The demo shows visualization of XGradCAM for object classification model and EigenCAM for object detection model. 
        """
    )

    with gr.Tab("XGradCAM"):
        with gr.Row():
            with gr.Column():
                xgradcam_image = gr.Image(label="Input Image")
                gr.Markdown(
                    """
                    Load the pretrained model to the variable <code>model</code> depending on how it was saved. Then, specify <code>target_layer</code> (normally the last convolutional layer) to compute CAM for. \
                    Here are some common choices:
                      - FasterRCNN: <code>model.backbone</code>
                      - ResNet18 and 50: <code>model.layer4</code>
                      - VGG and DenseNet161: <code>model.features</code>
                      
                    Please don't change the variable names in the following code. 
                    """
                )
                xgradcam_model = gr.Code(label="Model and Target Layer", value=
                    """
                    from torchvision.models import resnet50, ResNet50_Weights
                    
                    model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
                    target_layer = model.layer4
                    """, language="python")
                gr.Markdown(
                    """
                    Enter the target category as an integer to compute CAM for. It is the category index in the range <code>[0, NUM_OF_CLASSES-1]</code> based on the training dataset. \
                    If it is left blank, the highest scoring category will be used.
                    """
                )
                xgradcam_targetClass = gr.Textbox(label="Target Category")
            xgradcam_output = gr.Image()
        xgradcam_button = gr.Button("Submit")

    with gr.Tab("EigenCAM"):
        with gr.Row():
            with gr.Column():
                eigencam_image = gr.Image(label="Input Image")
                gr.Markdown(
                    """
                    Load the pretrained model to the variable <code>model</code> depending on how it was saved. Then, specify <code>target_layer</code> (normally the last convolutional layer) to compute CAM for. \
                    Here are some common choices:
                      - FasterRCNN: <code>model.backbone</code>
                      - ResNet18 and 50: <code>model.layer4</code>
                      - VGG and DenseNet161: <code>model.features</code>

                    Please don't change the variable names in the following code. 
                    """
                )
                eigencam_model = gr.Code(label="Model and Target Layer", value=
                    """
                    from torchvision.models.detection import fasterrcnn_resnet50_fpn
    
                    model = fasterrcnn_resnet50_fpn(pretrained=True).eval()
                    target_layer = model.backbone
                    """, language="python")
                gr.Markdown(
                    """
                    In the case there is no class name in the output from the model, specify <code>class_labels</code> as a list to print them with corresponding bounding box in the image. \
                    Depending on the model, the class name might not be needed (e.g. YOLO). Then, create <code>color</code> as a list with a size of the number of classes. 
                    """
                )
                eigencam_class = gr.Code(label="Class Name", value=
                    """
                    import numpy as np
                    
                    class_labels = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
                        'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
                        'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
                        'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella',
                        'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
                        'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
                        'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork',
                        'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
                        'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
                        'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet',
                        'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
                        'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase',
                        'scissors', 'teddy bear', 'hair drier', 'toothbrush']
                    color = np.random.uniform(0, 255, size=(len(class_labels), 3))
                    """, language="python")
                gr.Markdown(
                    """
                    Get <code>output</code> of the model (in the case of FasterRCNN, convert <code>input_image</code> to a tensor first). Then, write a custom <code>process_output</code> function to process the outputs from the model. \
                    You should get <code>bounding_box_coordinates</code>, <code>class_names</code>, and <code>box_colors</code> of the detected objects with a higher detection score than <code>detection_threshold</code> value. \
                    If you use other models than FasterRCNN, you need to make your own custom process function to match the structure of the outputs from this function.
                    """
                )
                eigencam_process = gr.Code(label="Output Processing", value=
                    """
                    import torchvision
                    
                    transform = torchvision.transforms.ToTensor()
                    input_tensor = transform(np.float32(input_image) / 255).unsqueeze(0)
                    output = model(input_tensor)[0]
                    
                    def process_output(output, class_labels, color, detection_threshold):
                        boxes, classes, labels, colors = [], [], [], []
                        box = output['boxes'].tolist()
                        name = [class_labels[i] for i in output['labels'].detach().numpy()]
                        label = output['labels'].detach().numpy()
                        for i in range(len(name)):
                            score = output['scores'].detach().numpy()[i]
                            if score < detection_threshold:
                                continue
                            boxes.append([int(b) for b in box[i]])
                            classes.append(name[i])
                            colors.append(color[label[i]])
    
                        return boxes, classes, colors
                        
                    detection_threshold = 0.9
                    bounding_box_coordinates, class_names, box_colors = process_output(output, class_labels, color, detection_threshold)
                    """, language="python")
                gr.Markdown(
                    """
                    Write a custom <code>reshape</code> function to get the activations from the model and process them into 2D format. \
                    For example, the backbone of FasterRCNN outputs 5 different tenors with different spatial size as an Ordered Dict, \
                    thus, we need a custom function which aggregates these image tensors, resizes them to a common shape, and concatenates them. \
                    If you use other models than FasterRCNN, you need to write your own custom reshape function.
                    """
                )
                eigencam_reshape = gr.Code(label="Reshape", value=
                    """
                    def reshape(x):
                        target_size = x['pool'].size()[-2 : ]
                        activations = []
                        for key, value in x.items():
                            activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
                        activations = torch.cat(activations, axis=1)
                        
                        return activations
                    """, language="python")
            eigencam_output = gr.Image()
        eigencam_button = gr.Button("Submit")

    xgradcam_button.click(xgradcam, inputs=[xgradcam_image, xgradcam_model, xgradcam_targetClass], outputs=xgradcam_output)
    eigencam_button.click(eigencam, inputs=[eigencam_image, eigencam_model, eigencam_class, eigencam_process, eigencam_reshape], outputs=eigencam_output)

demo.launch()