Spaces:
Runtime error
Runtime error
File size: 4,028 Bytes
56f6887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import subprocess, sys
from multiprocessing import Pool
import pandas as pd, json, os, math
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from cricksheet import get_all_matches
# import ydata_profiling
## Reading IPL dataset
total_wickets = 10
n_pools = 100
## Feature selection/creation and ngram creation
features = [
"matchid",
"format",
"inning",
"batting_team",
"bowling_team",
"balls",
"runs",
"wickets",
"wkt_last_5_overs",
"runrate_last_5_overs",
"runrate_last_5_overs-current_RR",
"current_RR",
# "average",
"balls_left",
"wkts_left",
# "required_RR",
# "projected_score_more",
# "min_score_more",
# "max_score_more",
# "projected_avg_score_more",
"final_score",
"final_score_more",
"deviation_from_projected",
]
getformat = {"ODI": 1, "T20": 2}
def extract_features(inning):
data = []
# total_balls = (
# 120 if inning.format == "T20" else 300 if inning.format == "ODI" else None
# )
total_balls = len(inning.df)
df = inning.df
# matchid = inning.matchid
# batting_team = inning.battingteam
for i in range(1, len(df)):
min_RR = 0.5
max_RR = 2.5
runs = df.iloc[:i]["run"].sum()
run_last_5_overs = df["run"].iloc[-30:].sum()
runrate_last_5_overs = run_last_5_overs / 6
wickets = df.iloc[:i]["wicket"].sum()
wkt_last_5_overs = df.iloc[:i]["wicket"].iloc[-30:].sum()
balls = len(df.iloc[:i])
current_RR = (runs * 6) / balls
rr_diff = runrate_last_5_overs - current_RR
average = runs / (wickets + 1)
balls_left = total_balls - balls
wk_left = total_wickets - wickets
required_RR = (
((inning.target - runs) * 6) / balls if inning.inning == 2 else -9999
)
projected_score_more = current_RR * balls_left / 6
min_score_more = min_RR * balls_left / 6
max_score_more = max_RR * balls_left / 6
projected_avg_score_more = average * wk_left / 6
final_score_more = inning.final_score - runs
format = getformat[inning.format]
deviation_from_projected = final_score_more - projected_score_more
data.append(
(
inning.matchid,
format,
inning.inning,
inning.battingteam,
inning.bowlingteam,
balls,
runs,
wickets,
wkt_last_5_overs,
round(runrate_last_5_overs, 2),
round(rr_diff, 2),
round(current_RR, 2),
# average,
balls_left,
wk_left,
# required_RR,
# projected_score_more,
# min_score_more,
# max_score_more,
# projected_avg_score_more,
inning.final_score,
final_score_more,
round(deviation_from_projected),
)
)
return data
def save_features(innings, fname):
print("Feature enggineering and ngram creation...")
n_innings = len(innings)
print(f"{n_innings=}")
pool = Pool(processes=n_pools)
Xy = pool.map(extract_features, innings)
Xy = [xi for Xi in Xy for xi in Xi]
print(f"{len(Xy)=}")
featuresdf = pd.DataFrame(Xy, columns=features)
# ydata_profiling.ProfileReport(featuresdf, title=fname).to_file(fname + ".html")
featuresdf.to_feather(fname)
featuresdf.to_csv(fname + ".csv")
if __name__ == "__main__":
print("Loading t20 data...")
innings = get_all_matches(format="T20", since=2021)
print("Saving t20 data")
save_features(innings, "data/t20features.feather")
print("Loading odi data...")
innings = get_all_matches(format="ODI", since=2021)
print("Saving odi data")
save_features(innings, "data/odifeatures.feather")
|