Spaces:
Sleeping
Sleeping
File size: 8,405 Bytes
95e4bf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#THIS IS THE FINAL WORKING VIDEO - TEGNA FINAL TIKTOK.
import subprocess
import streamlit as st
import tempfile
import base64
import os
from dotenv import load_dotenv
from PIL import Image
from io import BytesIO
from openai import OpenAI
import re
load_dotenv()
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
if not OpenAI.api_key:
raise ValueError("The OpenAI API key must be set in the OPENAI_API_KEY environment variable.")
client = OpenAI()
# Create a layout with columns
col1, col2 = st.columns([8, 2]) # Adjust the ratio as needed
def execute_ffmpeg_command(command):
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode == 0:
print("FFmpeg command executed successfully.")
return result.stdout, result.stderr
else:
print("Error executing FFmpeg command:")
return None, result.stderr
except Exception as e:
print("An error occurred during FFmpeg execution:")
return None, str(e)
def execute_fmpeg_command(command):
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return result.stdout # Return just the stdout part, not a tuple
except subprocess.CalledProcessError as e:
print(f"FFmpeg command failed with error: {e.stderr.decode()}")
return None
def search_keyword(keyword, frame_texts):
return [index for index, text in st.session_state.frame_texts.items() if keyword.lower() in text.lower()]
frame_numbers = []
# Function to generate description for video frames
def generate_description(base64_frames):
try:
prompt_messages = [
{
"role": "user",
"content": [ " Find the most interesting / impactful portions of a video. The output will be targeted towards social media (like TikTok or Reels) or to news broadcasts. For the provided frames return the most interesting / impactful frames that will hold the interest of an audience and also describe why you chose it. I am trying to fill these frames for a TikTok video. Hence while selecting the frames keep that in mind. You do not have to give me the script of the Tiktok vfideo. Just return the most interesting frames in a sequence that will come for a tiktok video. List all frame numbers separated by commas at the end like this for eg, Frames : 1,2,4,7,9",
*map(lambda x: {"image": x, "resize": 428}, base64_frames),
],
},
]
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=prompt_messages,
max_tokens=3000,
)
description = response.choices[0].message.content
# Use regular expression to find frame numbers
frame_numbers = re.findall(r'Frames\s*:\s*(\d+(?:,\s*\d+)*)', response.choices[0].message.content)
# Convert the string of numbers into a list of integers
if frame_numbers:
frame_numbers = [int(num) for num in frame_numbers[0].split(',')]
else:
frame_numbers = []
print("Frame numbers to extract:", frame_numbers)
return description, frame_numbers
except Exception as e:
print(f"Error in generate_description: {e}")
return None, []
with col2:
pass
with col1:
is_logo_path = "IntelliStreamLogo.png" # Update this path to where your logo is stored
is_logo = Image.open(is_logo_path)
st.image(is_logo, width=200)
st.markdown("<h1 style='text-align: left; color: white;'></h1>", unsafe_allow_html=True)
# Streamlit UI
st.title("Insightly Video")
uploaded_video = st.file_uploader("Or upload a video file (MP4):", type=["mp4"])
extract_frames_button = st.button("Extract Frames")
if uploaded_video is not None and extract_frames_button:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile:
tmpfile.write(uploaded_video.getvalue())
video_file_path = tmpfile.name
# Command to extract one frame per second for the entire video duration
ffmpeg_command = [
'ffmpeg',
'-i', video_file_path,
'-vf', 'fps=0.25',
'-f', 'image2pipe',
'-c:v', 'mjpeg',
'-an',
'-'
]
ffmpeg_output = execute_fmpeg_command(ffmpeg_command)
if ffmpeg_output:
st.write("Frames Extracted:")
frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:] # Correct splitting for JPEG frames
n_frames = len(frame_bytes_list)
base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list]
frame_dict = {}
for idx, frame_base64 in enumerate(base64_frames):
col1, col2 = st.columns([3, 2])
with col1:
frame_bytes = base64.b64decode(frame_base64)
frame_dict[idx + 1] = frame_bytes
st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True)
with col2:
pass
# Extract audio for the entire video
audio_command = [
'ffmpeg',
'-i', video_file_path,
'-vn',
'-acodec', 'libmp3lame',
'-f', 'mp3',
'-'
]
audio_output, _ = execute_ffmpeg_command(audio_command)
st.write("Extracted Audio:")
audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_tempfile.write(audio_output)
audio_tempfile.close()
st.audio(audio_output, format='audio/mpeg', start_time=0)
# Get consolidated description for all frames
if ffmpeg_output:
description, frame_numbers = generate_description(base64_frames)
if description:
st.header("Frame Description:")
st.write(description)
else:
st.write("Failed to generate description.")
if frame_numbers:
print("Frame numbers to extract:", frame_numbers) # Check frame numbers
# Create a mapping from original frame numbers to sequential numbers
frame_mapping = {}
new_frame_numbers = []
for idx, frame_number in enumerate(sorted(frame_numbers)):
frame_mapping[frame_number] = idx + 1
new_frame_numbers.append(idx + 1)
print("New frame numbers:", new_frame_numbers)
print("Frame mapping:", frame_mapping)
# Create a temporary directory to store images
with tempfile.TemporaryDirectory() as temp_dir:
image_paths = []
for frame_number in frame_numbers:
if frame_number in frame_dict:
frame_path = os.path.join(temp_dir, f'frame_{frame_mapping[frame_number]:03}.jpg') # Updated file naming
image_paths.append(frame_path)
with open(frame_path, 'wb') as f:
f.write(frame_dict[frame_number])
# Once all selected frames are saved as images, create a video from them using FFmpeg
video_output_path = os.path.join(temp_dir, 'output.mp4')
framerate = 1 # Adjust framerate based on the number of frames
ffmpeg_command = [
'ffmpeg',
'-framerate', str(framerate), # Set framerate based on the number of frames
'-i', os.path.join(temp_dir, 'frame_%03d.jpg'), # Input pattern for all frame files
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
video_output_path
]
print("FFmpeg command:", ' '.join(ffmpeg_command)) # Debug FFmpeg command
subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Display or provide a download link for the created video
st.header("Final Video")
st.video(video_output_path)
|