File size: 19,206 Bytes
b1bae0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "from flask import Flask, render_template, request, url_for\n",
    "import pickle\n",
    "import numpy as np\n",
    "\n",
    "linreg = pickle.load(open('Models/lr.pkl', 'rb'))\n",
    "knn_model = pickle.load(open('Models/knn_model.pkl', 'rb'))\n",
    "gaussian_nb = pickle.load(open('Models/nbG_model.pkl', 'rb'))\n",
    "multinomial_nb = pickle.load(open('Models/nbM_model.pkl', 'rb'))\n",
    "bernoulli_nb = pickle.load(open('Models/nbB_model.pkl', 'rb'))\n",
    "\n",
    "job_map = {\n",
    "    1: 'Junior',\n",
    "    2: 'Senior',\n",
    "    3: 'Project Manager',\n",
    "    4: 'CTO',\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "while True:\n",
    "    salary = float(input(\"Enter salary: \"))\n",
    "    print(\"Salary entered: \", salary)\n",
    "\n",
    "    experience = float(input(\"Enter experience: \"))\n",
    "    print(\"Experience entered: \", experience)\n",
    "\n",
    "    with open('Models/tts.pkl', 'rb') as f:\n",
    "        data = pickle.load(f)\n",
    "\n",
    "    X=data['X']\n",
    "    y=data['y']\n",
    "\n",
    "    X = np.vstack((X, np.array([salary, experience])))\n",
    "    y= np.hstack((y, experience))  # use a new label for the user's input\n",
    "\n",
    "    # Split the data into training and testing sets\n",
    "    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
    "\n",
    "    # Fit the Naive Bayes models on the training data\n",
    "    gaussian_nb.fit(X_train, y_train)\n",
    "    multinomial_nb.fit(X_train, y_train)\n",
    "    bernoulli_nb.fit(X_train, y_train)\n",
    "\n",
    "    # Evaluate the accuracy of the models on the testing set\n",
    "    gaussian_accuracy = gaussian_nb.score(X_test, y_test)\n",
    "    multinomial_accuracy = multinomial_nb.score(X_test, y_test)\n",
    "    bernoulli_accuracy = bernoulli_nb.score(X_test, y_test)\n",
    "\n",
    "    # Use each Naive Bayes model to make a prediction based on the user's input values\n",
    "    gaussian_prediction = gaussian_nb.predict([[salary, experience]])[0]\n",
    "    multinomial_prediction = multinomial_nb.predict([[salary, experience]])[0]\n",
    "    bernoulli_prediction = bernoulli_nb.predict([[salary, experience]])[0]\n",
    "\n",
    "    # Map the predicted job titles to their corresponding string values\n",
    "    gaussian_prediction = job_map.get(gaussian_prediction)\n",
    "    multinomial_prediction = job_map.get(multinomial_prediction)\n",
    "    bernoulli_prediction = job_map.get(bernoulli_prediction)\n",
    "\n",
    "    # # Print the accuracy and predicted job title for each Naive Bayes model\n",
    "    # print(\"Gaussian Accuracy: {:.2f}%, Prediction: {}\".format(gaussian_accuracy * 100, gaussian_prediction))\n",
    "    # print(\"Multinomial Accuracy: {:.2f}%, Prediction: {}\".format(multinomial_accuracy * 100, multinomial_prediction))\n",
    "    # print(\"Bernoulli Accuracy: {:.2f}%, Prediction: {}\".format(bernoulli_accuracy * 100, bernoulli_prediction))\n",
    "    # print(\"\\n\")\n",
    "\n",
    "    # # Evaluate the accuracy of the models on the new input\n",
    "    # gaussian_accuracy_new = gaussian_nb.score([[salary, experience]], [5])\n",
    "    # multinomial_accuracy_new = multinomial_nb.score([[salary, experience]], [5])\n",
    "    # bernoulli_accuracy_new = bernoulli_nb.score([[salary, experience]], [5])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "    #     X=data['X']\n",
    "    #     y=data['y']\n",
    "\n",
    "    #     # Combine the user's input values with the existing data\n",
    "    #     X_new = np.vstack((X, np.array([salary, experience])))\n",
    "    #     y_new = np.hstack((y, 5))  # use a new label for the user's input\n",
    "\n",
    "    #     n_splits=10\n",
    "\n",
    "    #     # Use k-fold cross-validation to generate a new test set for each iteration\n",
    "    #     kf = KFold(n_splits=n_splits, shuffle=False, random_state=None)\n",
    "\n",
    "    #     gaussian_accuracy = 0\n",
    "    #     multinomial_accuracy = 0\n",
    "    #     bernoulli_accuracy = 0\n",
    "\n",
    "    #     for train_index, test_index in kf.split(X_new):\n",
    "    #         X_train, X_test = X_new[train_index], X_new[test_index]\n",
    "    #         y_train, y_test = y_new[train_index], y_new[test_index]\n",
    "\n",
    "    #         # Fit the Naive Bayes models on the training data\n",
    "    #         gaussian_nb.fit(X_train, y_train)\n",
    "    #         multinomial_nb.fit(X_train, y_train)\n",
    "    #         bernoulli_nb.fit(X_train, y_train)\n",
    "\n",
    "    #         # Use each Naive Bayes model to make a prediction based on the user's input values\n",
    "    #         gaussian_prediction = gaussian_nb.predict([[salary, experience]])[0]\n",
    "    #         multinomial_prediction = multinomial_nb.predict([[salary, experience]])[0]\n",
    "    #         bernoulli_prediction = bernoulli_nb.predict([[salary, experience]])[0]\n",
    "\n",
    "    #         # Update the accuracy scores for each Naive Bayes model\n",
    "    #         gaussian_accuracy += gaussian_nb.score(X_test, y_test)\n",
    "    #         multinomial_accuracy += multinomial_nb.score(X_test, y_test)\n",
    "    #         bernoulli_accuracy += bernoulli_nb.score(X_test, y_test)\n",
    "\n",
    "    #     # Calculate the mean accuracy for each Naive Bayes model over all folds\n",
    "    #     gaussian_accuracy = round(gaussian_accuracy / n_splits * 100, 3)\n",
    "    #     multinomial_accuracy = round(multinomial_accuracy / n_splits * 100, 3)\n",
    "    #     bernoulli_accuracy = round(bernoulli_accuracy / n_splits * 100, 3)\n",
    "\n",
    "    #     # Map the predicted job titles to their corresponding string values\n",
    "    #     gaussian_prediction = job_map.get(gaussian_prediction)\n",
    "    #     multinomial_prediction = job_map.get(multinomial_prediction)\n",
    "    #     bernoulli_prediction = job_map.get(bernoulli_prediction)\n",
    "\n",
    "    #     # Render the results template with the predicted job classification and accuracy scores\n",
    "    #     return render_template('naive.html',\n",
    "    #         gaussian_prediction=gaussian_prediction,\n",
    "    #         multinomial_prediction=multinomial_prediction,\n",
    "    #         bernoulli_prediction=bernoulli_prediction,\n",
    "    #         gaussian_accuracy=str(gaussian_accuracy) + \"%\",\n",
    "    #         multinomial_accuracy=str(multinomial_accuracy) + \"%\",\n",
    "    #         bernoulli_accuracy=str(bernoulli_accuracy) + \"%\",\n",
    "    #         salary=salary,\n",
    "    #         experience=experience,\n",
    "    #         reset=True)\n",
    "    # else:\n",
    "    #     # Render the job classification form\n",
    "    #     return render_template('naive.html')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "    # if request.method == 'POST':\n",
    "    #     # Get the user's input values\n",
    "    #     salary = float(request.form['salary'])\n",
    "    #     experience = float(request.form['experience'])\n",
    "\n",
    "    #     with open('Models/tts.pkl', 'rb') as f:\n",
    "    #         data = pickle.load(f)\n",
    "\n",
    "    #     X=data['X']\n",
    "    #     y=data['y']\n",
    "\n",
    "\n",
    "    #     X = np.vstack((X, np.array([salary, experience])))\n",
    "    #     y= np.hstack((y, 5))  # use a new label for the user's input\n",
    "\n",
    "\n",
    "    #     # Split the data into training and testing sets\n",
    "    #     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)\n",
    "\n",
    "    #     # Fit the Naive Bayes models on the training data\n",
    "    #     gaussian_nb.fit(X_train, y_train)\n",
    "    #     multinomial_nb.fit(X_train, y_train)\n",
    "    #     bernoulli_nb.fit(X_train, y_train)\n",
    "\n",
    "    #     # Use each Naive Bayes model to make a prediction based on the user's input values\n",
    "    #     gaussian_prediction = gaussian_nb.predict([[salary, experience]])[0]\n",
    "    #     multinomial_prediction = multinomial_nb.predict([[salary, experience]])[0]\n",
    "    #     bernoulli_prediction = bernoulli_nb.predict([[salary, experience]])[0]\n",
    "\n",
    "    #     # Evaluate the accuracy of the models on the testing set\n",
    "    #     gaussian_accuracy = round(gaussian_nb.score(X_test, y_test) * 100, 3) \n",
    "    #     multinomial_accuracy = round(multinomial_nb.score(X_test, y_test) * 100, 3)\n",
    "    #     bernoulli_accuracy = round(bernoulli_nb.score(X_test, y_test) * 100, 3)\n",
    "\n",
    "    #     # Map the predicted job titles to their corresponding string values\n",
    "    #     gaussian_prediction = job_map.get(gaussian_prediction)\n",
    "    #     multinomial_prediction = job_map.get(multinomial_prediction)\n",
    "    #     bernoulli_prediction = job_map.get(bernoulli_prediction)\n",
    "\n",
    "    #     # Render the results template with the predicted job classification and accuracy scores\n",
    "    #     return render_template('naive.html',\n",
    "    #         gaussian_prediction=gaussian_prediction,\n",
    "    #         multinomial_prediction=multinomial_prediction,\n",
    "    #         bernoulli_prediction=bernoulli_prediction,\n",
    "    #         gaussian_accuracy=str(gaussian_accuracy) + \"%\",\n",
    "    #         multinomial_accuracy=str(multinomial_accuracy) + \"%\",\n",
    "    #         bernoulli_accuracy=str(bernoulli_accuracy) + \"%\",\n",
    "    #         salary=salary,\n",
    "    #         experience=experience,\n",
    "    #         reset=True)\n",
    "    # else:\n",
    "    #     # Render the job classification form\n",
    "    #     return render_template('naive.html')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Salary entered:  5000.0\n",
      "Experience entered:  5.0\n",
      "Gaussian Accuracy: 82.81%, Prediction: None\n",
      "Multinomial Accuracy: 26.67%, Prediction: None\n",
      "Bernoulli Accuracy: 21.05%, Prediction: Junior\n",
      "\n",
      "\n",
      "Salary entered:  4.0\n",
      "Experience entered:  5.0\n",
      "Gaussian Accuracy: 82.46%, Prediction: CTO\n",
      "Multinomial Accuracy: 25.96%, Prediction: Junior\n",
      "Bernoulli Accuracy: 20.70%, Prediction: Junior\n",
      "\n",
      "\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "could not convert string to float: ''",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[3], line 3\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39msklearn\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mmodel_selection\u001b[39;00m \u001b[39mimport\u001b[39;00m KFold\n\u001b[0;32m      2\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mTrue\u001b[39;00m:\n\u001b[1;32m----> 3\u001b[0m     salary \u001b[39m=\u001b[39m \u001b[39mfloat\u001b[39m(\u001b[39minput\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mEnter salary: \u001b[39m\u001b[39m\"\u001b[39m))\n\u001b[0;32m      4\u001b[0m     \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mSalary entered: \u001b[39m\u001b[39m\"\u001b[39m, salary)\n\u001b[0;32m      6\u001b[0m     experience \u001b[39m=\u001b[39m \u001b[39mfloat\u001b[39m(\u001b[39minput\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mEnter experience: \u001b[39m\u001b[39m\"\u001b[39m))\n",
      "\u001b[1;31mValueError\u001b[0m: could not convert string to float: ''"
     ]
    }
   ],
   "source": [
    "# from sklearn.model_selection import KFold\n",
    "# while True:\n",
    "#     salary = float(input(\"Enter salary: \"))\n",
    "#     print(\"Salary entered: \", salary)\n",
    "\n",
    "#     experience = float(input(\"Enter experience: \"))\n",
    "#     print(\"Experience entered: \", experience)\n",
    "\n",
    "#     with open('Models/tts.pkl', 'rb') as f:\n",
    "#         data = pickle.load(f)\n",
    "\n",
    "#     X=data['X']\n",
    "#     y=data['y']\n",
    "\n",
    "#     # Combine the user's input values with the existing data\n",
    "#     X_new = np.vstack((X, np.array([salary, experience])))\n",
    "#     y_new = np.hstack((y, 5))  # use a new label for the user's input\n",
    "\n",
    "#     n_splits=5\n",
    "\n",
    "#     # Use k-fold cross-validation to generate a new test set for each iteration\n",
    "#     kf = KFold(n_splits=n_splits, shuffle=True, random_state=None)\n",
    "\n",
    "#     gaussian_accuracy = 0\n",
    "#     multinomial_accuracy = 0\n",
    "#     bernoulli_accuracy = 0\n",
    "\n",
    "#     for train_index, test_index in kf.split(X_new):\n",
    "#         X_train, X_test = X_new[train_index], X_new[test_index]\n",
    "#         y_train, y_test = y_new[train_index], y_new[test_index]\n",
    "\n",
    "#         # Fit the Naive Bayes models on the training data\n",
    "#         gaussian_nb.fit(X_train, y_train)\n",
    "#         multinomial_nb.fit(X_train, y_train)\n",
    "#         bernoulli_nb.fit(X_train, y_train)\n",
    "\n",
    "#         # Use each Naive Bayes model to make a prediction based on the user's input values\n",
    "#         gaussian_prediction = gaussian_nb.predict([[salary, experience]])[0]\n",
    "#         multinomial_prediction = multinomial_nb.predict([[salary, experience]])[0]\n",
    "#         bernoulli_prediction = bernoulli_nb.predict([[salary, experience]])[0]\n",
    "\n",
    "#         # Update the accuracy scores for each Naive Bayes model\n",
    "#         gaussian_accuracy += gaussian_nb.score(X_test, y_test)\n",
    "#         multinomial_accuracy += multinomial_nb.score(X_test, y_test)\n",
    "#         bernoulli_accuracy += bernoulli_nb.score(X_test, y_test)\n",
    "\n",
    "#     # Calculate the mean accuracy for each Naive Bayes model over all folds\n",
    "#     gaussian_accuracy /= n_splits\n",
    "#     multinomial_accuracy /= n_splits\n",
    "#     bernoulli_accuracy /= n_splits\n",
    "\n",
    "#     # Map the predicted job titles to their corresponding string values\n",
    "#     gaussian_prediction = job_map.get(gaussian_prediction)\n",
    "#     multinomial_prediction = job_map.get(multinomial_prediction)\n",
    "#     bernoulli_prediction = job_map.get(bernoulli_prediction)\n",
    "\n",
    "#     # Print the accuracy and predicted job title for each Naive Bayes model\n",
    "#     print(\"Gaussian Accuracy: {:.2f}%, Prediction: {}\".format(gaussian_accuracy * 100, gaussian_prediction))\n",
    "#     print(\"Multinomial Accuracy: {:.2f}%, Prediction: {}\".format(multinomial_accuracy * 100, multinomial_prediction))\n",
    "#     print(\"Bernoulli Accuracy: {:.2f}%, Prediction: {}\".format(bernoulli_accuracy * 100, bernoulli_prediction))\n",
    "#     print(\"\\n\")\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# @app.route('/predictnaive', methods=['GET', 'POST'])\n",
    "# def predictnaive():\n",
    "#     if request.method == 'POST':\n",
    "#         # Get the user's input values\n",
    "#         salary = float(request.form['salary'])\n",
    "#         experience = float(request.form['experience'])\n",
    "\n",
    "#         # Load the data used to train and test the models\n",
    "#         with open('Models/tts.pkl', 'rb') as f:\n",
    "#             data = pickle.load(f)\n",
    "        \n",
    "#         # X_user = np.array([[salary, experience]])\n",
    "#         # y_user = np.array([5])\n",
    "#         # X_test_combined = np.concatenate((X_test, X_user))\n",
    "#         # y_test_combined = np.concatenate((y_test, y_user))\n",
    "\n",
    "#         X = np.vstack((data['X'], np.array([salary, experience])))\n",
    "#         y = np.hstack((data['y'], 5))  # use a new label for the user's input\n",
    "        \n",
    "#         from sklearn.model_selection import train_test_split\n",
    "#         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)\n",
    "\n",
    "#         # Re-fit models on combined data\n",
    "#         gaussian_nb.fit(X_train, y_train) \n",
    "#         multinomial_nb.fit(X_train, y_train)\n",
    "#         bernoulli_nb.fit(X_train, y_train)\n",
    "\n",
    "#         # Use each Naive Bayes model to make a prediction based on the user's input values\n",
    "#         gaussian_prediction = gaussian_nb.predict([[salary, experience]])[0]\n",
    "#         multinomial_prediction = multinomial_nb.predict([[salary, experience]])[0]\n",
    "#         bernoulli_prediction = bernoulli_nb.predict([[salary, experience]])[0]\n",
    "\n",
    "\n",
    "#         # Calculate the accuracy of each Naive Bayes model\n",
    "#         gaussian_accuracy = round(gaussian_nb.score(X_test, y_test), 3) * 100\n",
    "#         multinomial_accuracy = round(multinomial_nb.score(X_test, y_test), 3) * 100\n",
    "#         bernoulli_accuracy = round(bernoulli_nb.score(X_test, y_test), 3) * 100\n",
    "\n",
    "\n",
    "#         gaussian_prediction = job_map.get(gaussian_prediction)\n",
    "#         multinomial_prediction = job_map.get(multinomial_prediction)\n",
    "#         bernoulli_prediction = job_map.get(bernoulli_prediction)\n",
    "\n",
    "#         # Render the results template with the predicted job classification and accuracy scores\n",
    "#         return render_template('naive.html', gaussian_prediction=gaussian_prediction, multinomial_prediction=multinomial_prediction, bernoulli_prediction=bernoulli_prediction, gaussian_accuracy=gaussian_accuracy, multinomial_accuracy=multinomial_accuracy, bernoulli_accuracy=bernoulli_accuracy, salary=salary, experience=experience, reset=True)\n",
    "#     else:\n",
    "#         # Render the job classification form\n",
    "#         return render_template('naive.html')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}