File size: 5,655 Bytes
c288db4
8fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f0e03e
 
 
 
8fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import os
import uuid
from chat_3 import Chat

# Function to initialize a new session and create chatbot instance for that session
def initialize_session():
    session_id = str(uuid.uuid4())[:8]  # Generate unique session ID
    chatbot = Chat()  # Create a new Chat instance for this session
    # chatbot = Chat("gemini-2.0-flash")
    history = []  # Initialize history for this session
    return "", session_id, chatbot, history  # "" for clearing input

# Function to handle user input and chatbot response
def chat_function(prompt, history, session_id, chatbot):
    if chatbot is None:
        return history, "", session_id, chatbot  # Skip if chatbot not ready

    # Append the user's input to the message history
    history.append({"role": "user", "content": prompt})

    # Get the response from the chatbot
    response = chatbot.chat(prompt)

    # Append the assistant's response to the message history
    history.append({"role": "assistant", "content": response})

    return history, "", session_id, chatbot  # Clear input

# Function to save feedback with chat history
def send_feedback(feedback, history, session_id, chatbot):
    os.makedirs("app/feedback", exist_ok=True)  # Create folder if not exists
    filename = f"app/feedback/feedback_{session_id}.txt"
    with open(filename, "a", encoding="utf-8") as f:
        f.write("=== Feedback Received ===\n")
        f.write(f"Session ID: {session_id}\n")
        f.write(f"Feedback: {feedback}\n")
        f.write("Chat History:\n")
        for msg in history:
            f.write(f"{msg['role']}: {msg['content']}\n")
        f.write("\n--------------------------\n\n")
    return ""  # Clear feedback input

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="pink")) as demo:
    gr.Markdown("# Hey Beauty Chatbot 🧖🏻‍♀️✨🌿")
    gr.Markdown("สวัสดีค่ะ Hey Beauty ยินดีให้บริการค่ะ")

    # Initialize State
    session_state = gr.State()
    chatbot_instance = gr.State()
    chatbot_history = gr.State([])

    # Chat UI
    chatbot_interface = gr.Chatbot(type="messages", label="Chat History")
    user_input = gr.Textbox(placeholder="Type your message here...", elem_id="user_input", lines=1)

    submit_button = gr.Button("Send")
    clear_button = gr.Button("Delete Chat History")

    # Submit actions
    submit_button.click(
        fn=chat_function,
        inputs=[user_input, chatbot_history, session_state, chatbot_instance],
        outputs=[chatbot_interface, user_input, session_state, chatbot_instance]
    )

    user_input.submit(
        fn=chat_function,
        inputs=[user_input, chatbot_history, session_state, chatbot_instance],
        outputs=[chatbot_interface, user_input, session_state, chatbot_instance]
    )

    # # Clear history
    # clear_button.click(lambda: [], outputs=chatbot_interface)
    clear_button.click(
        fn=initialize_session,
        inputs=[],
        outputs=[user_input, session_state, chatbot_instance, chatbot_history]
    ).then(
        fn=lambda: gr.update(value=[]),
        inputs=[],
        outputs=chatbot_interface
    )


    # Feedback section
    with gr.Row():
        feedback_input = gr.Textbox(placeholder="Send us feedback...", label="💬 Feedback")
        send_feedback_button = gr.Button("Send Feedback")

    send_feedback_button.click(
        fn=send_feedback,
        inputs=[feedback_input, chatbot_history, session_state, chatbot_instance],
        outputs=[feedback_input]
    )

    # Initialize session on load
    demo.load(
        fn=initialize_session,
        inputs=[],
        outputs=[user_input, session_state, chatbot_instance, chatbot_history]
    )

if __name__ == "__main__":
    # Launch
    demo.launch(share=True)
    # demo.launch()


# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response


# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()