Spaces:
Runtime error
Runtime error
File size: 10,076 Bytes
ecca75f 948d7b6 ecca75f e80d5c0 ecca75f e151a5f 948d7b6 ecca75f 948d7b6 ecca75f e80d5c0 ecca75f e80d5c0 ecca75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# coding=utf-8
from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
from pathlib import Path
from src.logger import LoggerFactory
from src.prompt_concat import GetManualTestSamples, CreateTestDataset
from src.utils import decode_csv_to_json, load_json, save_to_json
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
TextIteratorStreamer,
)
from typing import List
import gradio as gr
import logging
import os
import shutil
import torch
import warnings
import random
import spaces
logger = LoggerFactory.create_logger(name="test", level=logging.INFO)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
MODEL_PATH = os.environ.get('MODEL_PATH', 'IndexTeam/Index-1.9B-Character')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, torch_dtype=torch.float16, device_map="auto",
trust_remote_code=True)
character_path = "./character"
def _resolve_path(path: Union[str, Path]) -> Path:
return Path(path).expanduser().resolve()
# logger = LoggerFactory.create_logger(name="test", level=logging.INFO)
# warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
# config_data = load_json("config/config.json")
# model_path = config_data["huggingface_local_path"]
# character_path = "./character"
# tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto",
# trust_remote_code=True)
def generate_with_question(question, role_name, role_file_path):
question_in = "\n".join(["\n".join(pair) for pair in question])
g = GetManualTestSamples(
role_name=role_name,
role_data_path=f"./character/{role_file_path}.json",
save_samples_dir="./character",
save_samples_path= role_file_path + "_rag.json",
prompt_path="./prompt/dataset_character.txt",
max_seq_len=4000
)
g.get_qa_samples_by_query(
questions_query=question_in,
keep_retrieve_results_flag=True
)
def create_datasets(role_name, role_file_path):
testset = []
role_samples_path = os.path.join("./character", role_file_path + "_rag.json")
c = CreateTestDataset(role_name=role_name,
role_samples_path=role_samples_path,
role_data_path=role_samples_path,
prompt_path="./prompt/dataset_character.txt"
)
res = c.load_samples()
testset.extend(res)
save_to_json(testset, f"./character/{role_file_path}_测试问题.json")
@spaces.GPU
def hf_gen(dialog: List, role_name, role_file_path, top_k, top_p, temperature, repetition_penalty, max_dec_len):
generate_with_question(dialog, role_name,role_file_path)
create_datasets(role_name,role_file_path)
json_data = load_json(f"{character_path}/{role_file_path}_测试问题.json")[0]
text = json_data["input_text"]
inputs = tokenizer(text, return_tensors="pt")
if torch.cuda.is_available():
model.to("cuda")
inputs.to("cuda")
streamer = TextIteratorStreamer(tokenizer, **tokenizer.init_kwargs)
generation_kwargs = dict(
inputs,
do_sample=True,
top_k=int(top_k),
top_p=float(top_p),
temperature=float(temperature),
repetition_penalty=float(repetition_penalty),
max_new_tokens=int(max_dec_len),
pad_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
answer = ""
for new_text in streamer:
answer += new_text
yield answer[len(text):]
@spaces.GPU
def generate(chat_history: List, query, role_name, role_desc, role_file_path, top_k, top_p, temperature, repetition_penalty, max_dec_len):
"""generate after hitting "submit" button
Args:
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
query (str): query of current round
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
temperature (float): strictly positive float value used to modulate the logits distribution.
max_dec_len (int): The maximum numbers of tokens to generate.
Yields:
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n], [q_n+1, a_n+1]]. chat_history + QA of current round.
"""
assert query != "", "Input must not be empty!!!"
# apply chat template
chat_history.append([f"user:{query}", ""])
if role_name == "三三":
role_file_path = "三三"
for answer in hf_gen(chat_history, role_name,role_file_path, top_k, top_p, temperature, repetition_penalty, max_dec_len):
chat_history[-1][1] = role_name + ":" + answer
yield gr.update(value=""), chat_history
@spaces.GPU
def regenerate(chat_history: List,role_name, role_description, role_file_path, top_k, top_p, temperature, repetition_penalty, max_dec_len):
"""re-generate the answer of last round's query
Args:
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
temperature (float): strictly positive float value used to modulate the logits distribution.
max_dec_len (int): The maximum numbers of tokens to generate.
Yields:
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. chat_history
"""
assert len(chat_history) >= 1, "History is empty. Nothing to regenerate!!"
if len(chat_history[-1]) > 1:
chat_history[-1][1] = ""
# apply chat template
if role_name == "三三":
role_file_path = "三三"
for answer in hf_gen(chat_history, role_name,role_file_path, top_k, top_p, temperature, repetition_penalty, max_dec_len):
chat_history[-1][1] = role_name + ":" + answer
yield gr.update(value=""), chat_history
def clear_history():
"""clear all chat history
Returns:
List: empty chat history
"""
torch.cuda.empty_cache()
return []
def delete_current_user(user_role_path):
try:
role_upload_path = os.path.join(character_path, user_role_path + ".csv")
role_path = os.path.join(character_path, user_role_path + ".json")
rag_path = os.path.join(character_path, user_role_path + "_rag.json")
question_path = os.path.join(character_path, user_role_path + "_测试问题.json")
files_to_delete = [role_upload_path, role_path, rag_path, question_path]
for file_path in files_to_delete:
os.remove(file_path)
except Exception as e:
print(e)
# launch gradio demo
with gr.Blocks(theme="soft") as demo:
gr.Markdown("""# Index-1.9B RolePlay Gradio Demo""")
with gr.Row():
with gr.Column(scale=1):
top_k = gr.Slider(0, 10, value=5, step=1, label="top_k")
top_p = gr.Slider(0, 1, value=0.8, step=0.8, label="top_p")
temperature = gr.Slider(0.1, 2.0, value=0.85, step=0.1, label="temperature")
repetition_penalty = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="repetition_penalty")
max_dec_len = gr.Slider(1, 4096, value=512, step=1, label="max_dec_len")
file_input = gr.File(label="上传角色对话语料(.csv)")
role_description = gr.Textbox(label="Role Description", placeholder="输入角色描述", lines=2)
upload_button = gr.Button("生成角色!")
new_path = gr.State()
def generate_file(file_obj, role_info):
random.seed()
alphabet = 'abcdefghijklmnopqrstuvwxyz!@#$%^&*()'
random_char = "".join(random.choice(alphabet) for _ in range(10))
role_name = os.path.basename(file_obj).split(".")[0]
new_path = role_name + random_char
new_save_path = os.path.join(character_path, new_path+".csv")
shutil.copy(file_obj, new_save_path)
new_file_path = os.path.join(character_path, new_path)
decode_csv_to_json(os.path.join(character_path, new_path + ".csv"), role_name, role_info,
new_file_path + ".json" )
gr.Info(f"{role_name}生成成功")
return new_path
upload_button.click(generate_file, inputs=[file_input, role_description],outputs=new_path)
with gr.Column(scale=10):
chatbot = gr.Chatbot(bubble_full_width=False, height=400, label='Index-1.9B')
with gr.Row():
role_name = gr.Textbox(label="Role name", placeholder="Input your rolename here!", lines=2)
user_input = gr.Textbox(label="User", placeholder="Input your query here!", lines=2)
with gr.Row():
submit = gr.Button("🚀 Submit")
clear = gr.Button("🧹 Clear")
regen = gr.Button("🔄 Regenerate")
submit.click(generate, inputs=[chatbot, user_input, role_name, role_description, new_path, top_k, top_p, temperature,
repetition_penalty, max_dec_len],
outputs=[user_input, chatbot])
regen.click(regenerate,
inputs=[chatbot, role_name, role_description, new_path, top_k, top_p, temperature, repetition_penalty,
max_dec_len],
outputs=[user_input, chatbot])
clear.click(clear_history, inputs=[], outputs=[chatbot])
demo.queue().launch() |