File size: 6,289 Bytes
6d9249b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# -*- coding: utf-8 -*-
"""DIS.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1MI9utM7GJbz0w_zw1GJNU-ay15SzZHIN

# Clone official repo
"""

# Commented out IPython magic to ensure Python compatibility.
! git clone https://github.com/xuebinqin/DIS

# %cd ./DIS/IS-Net

!pip install gdown

!mkdir ./saved_models

"""# Imports"""

import numpy as np
from PIL import Image
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import os

import requests
import matplotlib.pyplot as plt
from io import BytesIO

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *

"""# Helpers"""

drive_link = "https://drive.google.com/uc?id=1XHIzgTzY5BQHw140EDIgwIb53K659ENH"

# Specify the local path and filename
local_path = "/content/DIS/IS-Net/saved_models/isnet.pth"

# Download the file
gdown.download(drive_link, local_path, quiet=False)

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights



class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image


transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    if im_path.startswith("http"):
        im_path = BytesIO(requests.get(im_path).content)

    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape


def build_model(hypar,device):
    net = hypar["model"]#GOSNETINC(3,1)

    # convert to half precision
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device))
        net.to(device)
    net.eval()
    return net


def predict(net,  inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)


    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable

    ds_val = net(inputs_val_v)[0] # list of 6 results

    pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W    # we want the first one which is the most accurate prediction

    ## recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # max = 1

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need

"""# Set Parameters"""

hypar = {} # paramters for inferencing


hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision

##  choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0

hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size

## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation

hypar["model"] = ISNetDIS()

"""# Build Model"""

net = build_model(hypar, device)

"""# Predict Mask"""

gsheetid = "1n9kk7IHyBzkw5e08wpjjt-Ry5aE_thqGrJ97rMeN-K4"
sheet_name = "sarvm"

gsheet_url = "https://docs.google.com/spreadsheets/d/{}/gviz/tq?tqx=out:csv&sheet={}".format(gsheetid, sheet_name)

gsheet_url

import pandas as pd
df = pd.read_csv(gsheet_url)

image_path = df.iloc[-1]['Image']

drive_link = image_path

# Specify the local path and filename
local_path = "/content/DIS/IS-Net/saved_models/input2.jpg"

# Download the file
gdown.download(drive_link, local_path, quiet=False)

from google.colab.patches import cv2_imshow
from PIL import Image
image_path = "/content/DIS/IS-Net/saved_models/input2.jpg"
# image_bytes = BytesIO(requests.get(image_path).content)
# print(image_bytes)
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net,image_tensor,orig_size, hypar, device)
image = Image.open(image_path)

f, ax = plt.subplots(1,2, figsize = (35,20))

# ax[0].imshow(np.array(Image.open(image_bytes))) # Original image
# cv2_imshow(image_path)

ax[0].imshow(mask, cmap = 'gray') # retouched image

# ax[0].set_title("Original Image")
ax[0].set_title("Mask")

plt.show()

import cv2
image = cv2.imread(image_path)
h, w , _ = image.shape
# print(h)
# print(w)
# print(_)
# print(image)
h, w , _ = image.shape
# print(h)
# print(w)
# print(_)
# new_image = np.zeros_like(image)
# new_image[mask] = image[mask]
new_image = cv2.bitwise_and(image, image, mask=mask)
transparent_bg = np.zeros((new_image.shape[0],new_image.shape[1], new_image.shape[2]+1) , dtype=np.uint8)

# Apply the mask to the transparent background
transparent_bg[:, :, :3] = new_image

# Set the alpha channel using the mask
transparent_bg[:, :, 3] = mask

# Save the new image with a transparent background
output_path = "/content/output.png"
cv2.imwrite(output_path, transparent_bg)
# Save the new image
# output_path = "/content/output.jpg"
# cv2.imwrite(output_path, new_image)