Spaces:
Runtime error
Runtime error
File size: 6,289 Bytes
6d9249b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# -*- coding: utf-8 -*-
"""DIS.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1MI9utM7GJbz0w_zw1GJNU-ay15SzZHIN
# Clone official repo
"""
# Commented out IPython magic to ensure Python compatibility.
! git clone https://github.com/xuebinqin/DIS
# %cd ./DIS/IS-Net
!pip install gdown
!mkdir ./saved_models
"""# Imports"""
import numpy as np
from PIL import Image
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import os
import requests
import matplotlib.pyplot as plt
from io import BytesIO
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
"""# Helpers"""
drive_link = "https://drive.google.com/uc?id=1XHIzgTzY5BQHw140EDIgwIb53K659ENH"
# Specify the local path and filename
local_path = "/content/DIS/IS-Net/saved_models/isnet.pth"
# Download the file
gdown.download(drive_link, local_path, quiet=False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
if im_path.startswith("http"):
im_path = BytesIO(requests.get(im_path).content)
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar,device):
net = hypar["model"]#GOSNETINC(3,1)
# convert to half precision
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
'''
Given an Image, predict the mask
'''
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
ds_val = net(inputs_val_v)[0] # list of 6 results
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
"""# Set Parameters"""
hypar = {} # paramters for inferencing
hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
## choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
hypar["model"] = ISNetDIS()
"""# Build Model"""
net = build_model(hypar, device)
"""# Predict Mask"""
gsheetid = "1n9kk7IHyBzkw5e08wpjjt-Ry5aE_thqGrJ97rMeN-K4"
sheet_name = "sarvm"
gsheet_url = "https://docs.google.com/spreadsheets/d/{}/gviz/tq?tqx=out:csv&sheet={}".format(gsheetid, sheet_name)
gsheet_url
import pandas as pd
df = pd.read_csv(gsheet_url)
image_path = df.iloc[-1]['Image']
drive_link = image_path
# Specify the local path and filename
local_path = "/content/DIS/IS-Net/saved_models/input2.jpg"
# Download the file
gdown.download(drive_link, local_path, quiet=False)
from google.colab.patches import cv2_imshow
from PIL import Image
image_path = "/content/DIS/IS-Net/saved_models/input2.jpg"
# image_bytes = BytesIO(requests.get(image_path).content)
# print(image_bytes)
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net,image_tensor,orig_size, hypar, device)
image = Image.open(image_path)
f, ax = plt.subplots(1,2, figsize = (35,20))
# ax[0].imshow(np.array(Image.open(image_bytes))) # Original image
# cv2_imshow(image_path)
ax[0].imshow(mask, cmap = 'gray') # retouched image
# ax[0].set_title("Original Image")
ax[0].set_title("Mask")
plt.show()
import cv2
image = cv2.imread(image_path)
h, w , _ = image.shape
# print(h)
# print(w)
# print(_)
# print(image)
h, w , _ = image.shape
# print(h)
# print(w)
# print(_)
# new_image = np.zeros_like(image)
# new_image[mask] = image[mask]
new_image = cv2.bitwise_and(image, image, mask=mask)
transparent_bg = np.zeros((new_image.shape[0],new_image.shape[1], new_image.shape[2]+1) , dtype=np.uint8)
# Apply the mask to the transparent background
transparent_bg[:, :, :3] = new_image
# Set the alpha channel using the mask
transparent_bg[:, :, 3] = mask
# Save the new image with a transparent background
output_path = "/content/output.png"
cv2.imwrite(output_path, transparent_bg)
# Save the new image
# output_path = "/content/output.jpg"
# cv2.imwrite(output_path, new_image)
|