Spaces:
Build error
Build error
File size: 38,210 Bytes
3e5595b f57d7c6 3e5595b f57d7c6 3e5595b f57d7c6 3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 |
#include "ggml_v2-opencl.h"
#include <array>
#include <atomic>
#include <sstream>
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast.h>
#include <clblast_c.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "ggml_v2.h"
#define CL_DMMV_BLOCK_SIZE 32;
#define MULTILINE_QUOTE(...) #__VA_ARGS__
static std::string program_source = MULTILINE_QUOTE(
typedef char int8_t;
typedef uchar uint8_t;
typedef int int32_t;
typedef uint uint32_t;
struct block_q4_0
{
float d;
uint8_t qs[16];
};
struct block_q4_1
{
float d;
float m;
uint8_t qs[16];
};
struct __attribute__ ((packed)) block_q5_0
{
half d;
uint32_t qh;
uint8_t qs[16];
};
struct block_q5_1
{
half d;
half m;
uint32_t qh;
uint8_t qs[16];
};
struct block_q8_0
{
float d;
uint8_t qs[32];
};
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
const uint i = get_global_id(0);
y[i] = vload_half(0, &x[i]);
}
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = x[ib].d;
const uint8_t vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
*v0 = (vi0 - 8)*d;
*v1 = (vi1 - 8)*d;
}
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = x[ib].d;
const float m = x[ib].m;
const uint8_t vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
*v0 = vi0*d + m;
*v1 = vi1*d + m;
}
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, (__global half*) &x[ib].d);
uint32_t qh = x[ib].qh;
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
*v0 = x0*d;
*v1 = x1*d;
}
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, (__global half*) &x[ib].d);
const float m = vload_half(0, (__global half*) &x[ib].m);
uint32_t qh = x[ib].qh;
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
*v0 = x0*d + m;
*v1 = x1*d + m;
}
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = x[ib].d;
const int8_t vi0 = x[ib].qs[iqs + 0];
const int8_t vi1 = x[ib].qs[iqs + 1];
*v0 = vi0*d;
*v1 = vi1*d;
}
static void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
*v0 = vload_half(0, &x[ib + 0]);
*v1 = vload_half(0, &x[ib + 1]);
}
);
static std::string dequant_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
if (i >= get_global_size(0)) {
return;
}
const uint qk = QUANT_K;
const uint qr = QUANT_R;
const int ib = i/qk; // block index
const int iqs = (i%qk)/qr; // quant index
const int iybs = i - i%qk; // y block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float v0, v1;
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
y[iybs + iqs + 0] = v0;
y[iybs + iqs + y_offset] = v1;
}
);
static std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
const int block_size = get_local_size(0);
const int row = get_global_id(0) / block_size;
const int tid = get_local_id(0);
const uint qk = QUANT_K;
const uint qr = QUANT_R;
const int y_offset = qr == 1 ? 1 : qk/2;
tmp[tid] = 0;
for (int i = 0; i < ncols/block_size; i += 2) {
const int col = i*block_size + 2*tid;
const int ib = (row*ncols + col)/qk; // block index
const int iqs = (col%qk)/qr; // quant index
const int iybs = col - col%qk; // y block start index
// dequantize
float v0, v1;
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
// matrix multiplication
tmp[tid] += v0 * y[iybs + iqs + 0];
tmp[tid] += v1 * y[iybs + iqs + y_offset];
}
// sum up partial sums and write back result
barrier(CLK_LOCAL_MEM_FENCE);
for (int s=block_size/2; s>0; s>>=1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0) {
dst[row] = tmp[0];
}
}
);
static std::array<std::string, 5> dequant_str_keys = {
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
};
static std::array<std::string, 30> dequant_str_values = {
"dequantize_row_q4_0", "struct block_q4_0", "32", "2", "dequantize_q4_0",
"dequantize_row_q4_1", "struct block_q4_1", "32", "2", "dequantize_q4_1",
"dequantize_row_q5_0", "struct block_q5_0", "32", "2", "dequantize_q5_0",
"dequantize_row_q5_1", "struct block_q5_1", "32", "2", "dequantize_q5_1",
"dequantize_row_q8_0", "struct block_q8_0", "32", "1", "dequantize_q8_0",
"convert_row_f16", "half", "1", "1", "convert_f16"
};
static std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "32", "2", "dequantize_q4_0",
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "32", "2", "dequantize_q4_1",
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "32", "2", "dequantize_q5_0",
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "32", "2", "dequantize_q5_1",
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "32", "1", "dequantize_q8_0",
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
};
static std::string& sreplace2(std::string& s, const std::string& from, const std::string& to) {
size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) {
s.replace(pos, from.length(), to);
pos += to.length();
}
return s;
}
static std::string generate_kernels() {
std::stringstream src;
src << program_source << '\n';
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
std::string dequant_kernel = dequant_template;
std::string dmmv_kernel = dequant_mul_mat_vec_template;
for (size_t j = 0; j < dequant_str_keys.size(); j++) {
sreplace2(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
sreplace2(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
}
src << dequant_kernel << '\n';
src << dmmv_kernel << '\n';
}
return src.str();
}
#define CL_CHECK(err, name) \
do { \
cl_int err_ = (err); \
if (err_ != CL_SUCCESS) { \
fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \
fprintf(stderr, "You may be out of VRAM. Please check if you have enough.\n"); \
exit(1); \
} \
} while (0)
static cl_platform_id platform;
static cl_device_id device;
static cl_context context;
static cl_command_queue queue;
static cl_program program;
static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0;
static cl_kernel convert_row_f16_cl;
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
static bool fp16_support = false;
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
cl_program p;
char *program_log;
size_t program_size, log_size;
int err;
program_size = strlen(program_buffer);
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
if(err < 0) {
fprintf(stderr, "OpenCL error creating program");
exit(1);
}
err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return p;
}
void ggml_v2_cl_init(void) {
cl_int err = 0;
char * GGML_V2_CLBLAST_PLATFORM = getenv("GGML_OPENCL_PLATFORM");
char * GGML_V2_CLBLAST_DEVICE = getenv("GGML_OPENCL_DEVICE");
int plat_num = (GGML_V2_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_V2_CLBLAST_PLATFORM));
int dev_num = (GGML_V2_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_V2_CLBLAST_DEVICE));
printf("\nInitializing LEGACY v2 CLBlast (First Run)...");
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
cl_uint num_platforms;
clGetPlatformIDs(0, NULL, &num_platforms);
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
clGetPlatformIDs(num_platforms, platforms, NULL);
platform = platforms[plat_num];
char platform_buffer[1024];
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
device = devices[dev_num];
char device_buffer[1024];
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
size_t ext_str_size;
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
char* ext_buffer = (char*) malloc(sizeof(char) * ext_str_size);
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
// Check if ext_buffer contains cl_khr_fp16
for (size_t i = 0; i < ext_str_size - 12; i++) {
if (memcmp(ext_buffer + i, "cl_khr_fp16", 11) == 0) {
fp16_support = true;
break;
}
}
free(ext_buffer);
printf("Using Platform: %s Device: %s FP16: %d\n", platform_buffer, device_buffer, fp16_support);
fp16_support = false;
printf("CL FP16 temporarily disabled pending further optimization.\n");
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
CL_CHECK(err, "clCreateContext");
queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
CL_CHECK(err, "clCreateCommandQueue");
free(platforms);
free(devices);
std::string kernel_src = generate_kernels();
program = build_program_from_source(context, device, kernel_src.c_str());
// FP16 to FP32 kernel
convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err);
CL_CHECK(err, "clCreateKernel");
// Dequantize kernels
dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err);
CL_CHECK(err, "clCreateKernel");
// dequant mul mat kernel
dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err);
CL_CHECK(err, "clCreateKernel");
dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err);
CL_CHECK(err, "clCreateKernel");
convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err);
CL_CHECK(err, "clCreateKernel");
}
static void ggml_v2_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
if (req_size <= *cur_size) {
return;
}
// Reallocate buffer with enough space
if (*cur_size > 0) {
clReleaseMemObject(*buf);
}
cl_int err;
*buf = clCreateBuffer(context, flags, req_size, NULL, &err);
*cur_size = req_size;
CL_CHECK(err, "clCreateBuffer");
}
static cl_kernel* ggml_v2_get_to_fp32_cl(ggml_v2_type type) {
switch (type) {
case GGML_V2_TYPE_Q4_0:
return &dequantize_row_q4_0_cl;
case GGML_V2_TYPE_Q4_1:
return &dequantize_row_q4_1_cl;
case GGML_V2_TYPE_Q5_0:
return &dequantize_row_q5_0_cl;
case GGML_V2_TYPE_Q5_1:
return &dequantize_row_q5_1_cl;
case GGML_V2_TYPE_Q8_0:
return &dequantize_row_q8_0_cl;
case GGML_V2_TYPE_F16:
return &convert_row_f16_cl;
default:
return nullptr;
}
}
static cl_kernel* ggml_v2_get_dequantize_mul_mat_vec_cl(ggml_v2_type type) {
switch (type) {
case GGML_V2_TYPE_Q4_0:
return &dequantize_mul_mat_vec_q4_0_cl;
case GGML_V2_TYPE_Q4_1:
return &dequantize_mul_mat_vec_q4_1_cl;
case GGML_V2_TYPE_Q5_0:
return &dequantize_mul_mat_vec_q5_0_cl;
case GGML_V2_TYPE_Q5_1:
return &dequantize_mul_mat_vec_q5_1_cl;
case GGML_V2_TYPE_Q8_0:
return &dequantize_mul_mat_vec_q8_0_cl;
case GGML_V2_TYPE_F16:
return &convert_mul_mat_vec_f16_cl;
default:
return nullptr;
}
}
// buffer pool for cl
#define MAX_CL_BUFFERS 256
struct scoped_spin_lock {
std::atomic_flag& lock;
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
while (lock.test_and_set(std::memory_order_acquire)) {
; // spin
}
}
~scoped_spin_lock() {
lock.clear(std::memory_order_release);
}
scoped_spin_lock(const scoped_spin_lock&) = delete;
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};
struct cl_buffer {
cl_mem mem;
size_t size = 0;
};
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
static cl_mem ggml_v2_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) {
scoped_spin_lock lock(g_cl_pool_lock);
cl_int err;
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
cl_buffer& b = g_cl_buffer_pool[i];
if (b.size > 0 && b.size >= size) {
cl_mem mem = b.mem;
*actual_size = b.size;
b.size = 0;
return mem;
}
}
cl_mem mem = clCreateBuffer(context, flags, size, NULL, &err);
CL_CHECK(err, "clCreateBuffer");
*actual_size = size;
return mem;
}
static void ggml_v2_cl_pool_free(cl_mem mem, size_t size) {
scoped_spin_lock lock(g_cl_pool_lock);
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
cl_buffer& b = g_cl_buffer_pool[i];
if (b.size == 0) {
b.mem = mem;
b.size = size;
return;
}
}
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
clReleaseMemObject(mem);
}
static cl_int ggml_v2_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_v2_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
cl_int err;
const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0];
const uint64_t nb1 = src->nb[1];
const uint64_t nb2 = src->nb[2];
const uint64_t nb3 = src->nb[3];
const enum ggml_v2_type type = src->type;
const size_t ts = ggml_v2_type_size(type);
const size_t bs = ggml_v2_blck_size(type);
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
if (nb0 == ts && nb1 == ts*ne0/bs) {
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
return err;
}
if (nb0 == ts) {
const size_t buffer_origin[3] = { offset, 0, 0 };
const size_t host_origin[3] = { 0, 0, 0 };
const size_t region[3] = { ts*ne0/bs, ne1, 1 };
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
return err;
}
for (uint64_t i1 = 0; i1 < ne1; i1++) {
// pretend the row is a matrix with cols=1
const size_t buffer_origin[3] = { offset, i1, 0 };
const size_t host_origin[3] = { 0, 0, 0 };
const size_t region[3] = { ts/bs, ne0, 1 };
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
if (err != CL_SUCCESS) {
break;
}
}
return err;
}
static void ggml_v2_cl_mul_mat_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
cl_mem d_X = ggml_v2_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_ONLY);
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
cl_int err;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy data to device
err = ggml_v2_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL);
err |= ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL);
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d");
CL_CHECK(clFinish(queue), "clFinish");
// compute
cl_event ev_sgemm;
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor,
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
printf("\nF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11);
GGML_V2_ASSERT(false);
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
err = clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL);
CL_CHECK(err, "clEnqueueReadBuffer");
}
}
ggml_v2_cl_pool_free(d_X, x_size);
ggml_v2_cl_pool_free(d_Y, y_size);
ggml_v2_cl_pool_free(d_D, d_size);
}
static void ggml_v2_cl_mul_mat_f16(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t /* wsize */) {
GGML_V2_ASSERT(fp16_support);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb10 = src1->nb[0];
const int nb11 = src1->nb[1];
const int nb12 = src1->nb[2];
const int nb13 = src1->nb[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_v2_fp16_t alpha = ggml_v2_fp32_to_fp16(1.0f);
const ggml_v2_fp16_t beta = ggml_v2_fp32_to_fp16(0.0f);
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
cl_mem d_X = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY);
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
cl_int err;
bool src1_cont_rows = nb10 == sizeof(float);
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy src0 to device
err = ggml_v2_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL);
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d");
// convert src1 to fp16
// TODO: use multiple threads
ggml_v2_fp16_t * const tmp = (ggml_v2_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_v2_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
ggml_v2_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
}
}
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
for (int64_t i00 = 0; i00 < ne10; i00++) {
// very slow due to no inlining
tmp[i01*ne10 + i00] = ggml_v2_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
}
}
}
// copy src1 to device
err |= clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_v2_fp16_t) * y_ne, tmp, 0, NULL, NULL);
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d");
CL_CHECK(clFinish(queue), "clFinish");
// compute
cl_event ev_sgemm;
clblast::StatusCode status = (clblast::StatusCode)CLBlastHgemm((CLBlastLayout)clblast::Layout::kColMajor,
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
printf("\nF16 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11);
GGML_V2_ASSERT(false);
}
// copy dst to host, then convert to float
err = clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_v2_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL);
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
ggml_v2_fp16_to_fp32_row(tmp, d, d_ne);
}
}
ggml_v2_cl_pool_free(d_X, x_size);
ggml_v2_cl_pool_free(d_Y, y_size);
ggml_v2_cl_pool_free(d_D, d_size);
}
static void ggml_v2_cl_mul_mat_q_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_v2_type type = src0->type;
const bool mul_mat_vec = ne11 == 1;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const size_t q_sz = ggml_v2_type_size(type) * x_ne / ggml_v2_blck_size(type);
size_t x_size, y_size, d_size, q_size;
cl_mem d_X;
if (!mul_mat_vec) {
d_X = ggml_v2_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE);
}
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
cl_mem d_Q;
if (src0->backend == GGML_V2_BACKEND_CPU) {
d_Q = ggml_v2_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
}
cl_kernel* to_fp32_cl = ggml_v2_get_to_fp32_cl(type);
cl_kernel* dmmv = ggml_v2_get_dequantize_mul_mat_vec_cl(type);
GGML_V2_ASSERT(to_fp32_cl != nullptr);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
cl_event ev_sgemm;
// copy src0 to device if necessary
if (src0->backend == GGML_V2_BACKEND_CPU) {
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d");
} else if (src0->backend == GGML_V2_BACKEND_CL) {
d_Q = *(cl_mem*) src0->data;
} else {
GGML_V2_ASSERT(false);
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d");
// compute
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
const size_t local = CL_DMMV_BLOCK_SIZE;
const cl_int ncols = ne00;
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg");
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL), "clSetKernelArg");
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y), "clSetKernelArg");
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D), "clSetKernelArg");
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols), "clSetKernelArg");
CL_CHECK(clFinish(queue), "clFinish");
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm), "clEnqueueNDRangeKernel");
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg");
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X), "clSetKernelArg");
CL_CHECK(clFinish(queue), "clFinish");
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL), "clEnqueueNDRangeKernel");
// copy src1 to device
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d");
// wait for conversion
CL_CHECK(clFinish(queue), "clFinish");
// compute
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor,
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
printf("\nQF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11);
GGML_V2_ASSERT(false);
}
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL), "clEnqueueReadBuffer");
clReleaseEvent(ev_sgemm);
}
}
if (!mul_mat_vec) {
ggml_v2_cl_pool_free(d_X, x_size);
}
ggml_v2_cl_pool_free(d_Y, y_size);
ggml_v2_cl_pool_free(d_D, d_size);
if (src0->backend == GGML_V2_BACKEND_CPU) {
ggml_v2_cl_pool_free(d_Q, q_size);
}
}
bool ggml_v2_cl_can_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
if ((src0->type == GGML_V2_TYPE_F32 || src0->type == GGML_V2_TYPE_F16 || ggml_v2_is_quantized(src0->type)) &&
src1->type == GGML_V2_TYPE_F32 &&
dst->type == GGML_V2_TYPE_F32 &&
((GetQuantsUnshuffled() && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_V2_BACKEND_CL)) {
return true;
}
return false;
}
bool ggml_v2_cl_mul_mat_use_f16(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * /* dst */) {
// If device doesn't support FP16
if (!fp16_support) {
return false;
}
size_t src0_sz = ggml_v2_nbytes(src0);
size_t src1_sz = ggml_v2_nbytes(src1);
// mul_mat_q: src0 is converted to fp32 on device
size_t mul_mat_q_transfer = src0_sz + src1_sz;
// mul_mat_f16: src1 is converted to fp16 on cpu
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_v2_fp16_t) * ggml_v2_nelements(src1);
// choose the smaller one to transfer to the device
// TODO: this is not always the best choice due to the overhead of converting to fp16
return mul_mat_f16_transfer < mul_mat_q_transfer;
}
void ggml_v2_cl_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst, void * wdata, size_t wsize) {
GGML_V2_ASSERT(ggml_v2_cl_can_mul_mat(src0, src1, dst));
if (src0->type == GGML_V2_TYPE_F32) {
ggml_v2_cl_mul_mat_f32(src0, src1, dst);
}
else if (src0->type == GGML_V2_TYPE_F16) {
if (ggml_v2_cl_mul_mat_use_f16(src0, src1, dst)) {
ggml_v2_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
}
else {
ggml_v2_cl_mul_mat_q_f32(src0, src1, dst);
}
}
else if (ggml_v2_is_quantized(src0->type)) {
ggml_v2_cl_mul_mat_q_f32(src0, src1, dst);
}
else {
GGML_V2_ASSERT(false);
}
}
size_t ggml_v2_cl_mul_mat_get_wsize(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) {
if (ggml_v2_cl_mul_mat_use_f16(src0, src1, dst)) {
return ggml_v2_nelements(src1) * sizeof(ggml_v2_fp16_t);
}
return 0;
}
void ggml_v2_cl_transform_tensor(ggml_v2_tensor * tensor) {
const int64_t ne0 = tensor->ne[0];
const int64_t ne1 = tensor->ne[1];
const int64_t ne2 = tensor->ne[2];
const int64_t ne3 = tensor->ne[3];
const ggml_v2_type type = tensor->type;
const size_t q_sz = ggml_v2_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_v2_blck_size(type);
size_t q_size;
cl_mem* dst = (cl_mem*) malloc(sizeof(cl_mem));
*dst = ggml_v2_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
// copy tensor to device
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
int i = i3*ne2 + i2;
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, *dst, i*ne0*ne1, tensor, i3, i2, NULL), "ggml_v2_cl_h2d_tensor_2d");
}
}
CL_CHECK(clFinish(queue), "clFinish");
tensor->data = dst;
tensor->backend = GGML_V2_BACKEND_CL;
}
void ggml_v2_cl_sgemm_wrapper(
const enum ggml_v2_blas_order order, const enum ggml_v2_blas_op trans_a, const enum ggml_v2_blas_op trans_b,
const int m, const int n, const int k,
const float alpha, const void *host_a, const int lda,
const float *host_b, const int ldb, const float beta,
float *host_c, const int ldc, const int btype) {
cl_int err = 0;
cl_kernel * kernel = ggml_v2_get_to_fp32_cl((ggml_v2_type)btype);
size_t global = n * k, local, size_qb;
bool dequant;
switch (btype) {
case GGML_V2_TYPE_F32:
dequant = false;
break;
case GGML_V2_TYPE_Q4_0:
dequant = true;
local = 16;
size_qb = global * (sizeof(float) + local) / 32;
break;
case GGML_V2_TYPE_Q4_1:
dequant = true;
local = 16;
size_qb = global * (sizeof(float) * 2 + local) / 32;
break;
case GGML_V2_TYPE_Q5_0:
dequant = true;
local = 16;
size_qb = global * (sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + local) / 32;
break;
case GGML_V2_TYPE_Q5_1:
dequant = true;
local = 16;
size_qb = global * (sizeof(ggml_v2_fp16_t) * 2 + sizeof(uint32_t) + local) / 32;
break;
case GGML_V2_TYPE_Q8_0:
dequant = true;
local = 32;
size_qb = global * (sizeof(float) + local) / 32;
break;
default:
fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype);
abort();
}
const size_t size_a = m * k * sizeof(float);
const size_t size_b = n * k * sizeof(float);
const size_t size_c = m * n * sizeof(float);
// Prepare buffers
ggml_v2_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a);
if (dequant) {
ggml_v2_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb);
}
ggml_v2_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b);
ggml_v2_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c);
cl_event ev_a, ev_qb, ev_b;
if (dequant) {
err = clSetKernelArg(*kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
err |= clSetKernelArg(*kernel, 1, sizeof(cl_mem), &cl_buffer_b);
CL_CHECK(err, "clSetKernelArg");
err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb);
CL_CHECK(err, "clEnqueueWriteBuffer qb");
} else {
err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b);
CL_CHECK(err, "clEnqueueWriteBuffer b");
}
err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a);
CL_CHECK(err, "clEnqueueWriteBuffer a");
if (dequant) {
err = clEnqueueNDRangeKernel(queue, *kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b);
CL_CHECK(err, "clEnqueueNDRangeKernel");
clReleaseEvent(ev_qb);
}
clWaitForEvents(1, &ev_a);
clWaitForEvents(1, &ev_b);
clReleaseEvent(ev_a);
clReleaseEvent(ev_b);
cl_event ev_sgemm;
CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order,
(CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b,
m, n, k,
alpha,
cl_buffer_a, 0, lda,
cl_buffer_b, 0, ldb,
beta,
cl_buffer_c, 0, ldc,
&queue, &ev_sgemm);
if (status != CLBlastSuccess) {
fprintf(stderr, "Error: CLBlast SGEMM %d\n", status);
abort();
}
cl_event ev_c;
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c);
// Wait for completion
clWaitForEvents(1, &ev_c);
clReleaseEvent(ev_sgemm);
clReleaseEvent(ev_c);
}
|