File size: 5,887 Bytes
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#include "common.h"
#include "llama.h"

#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif

// Used for debugging to print out beam tokens.
struct ostream_beam_view {
    llama_context * ctx;
    llama_beam_view beam_view;
};

static std::ostream & operator<<(std::ostream & os, const ostream_beam_view & obv) {
    os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
    for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
        os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
    }
    return os << ')';
}

// Put here anything you want back in beam_search_callback().
struct beam_search_callback_data {
    llama_context * ctx;
    std::vector<llama_token> response;
};

// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc.
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
    return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
}

// Function matching type llama_beam_search_callback_fn_t.
// Custom callback example is called each time the beams lengths increase:
//  * Show progress by printing ',' following by number of convergent beam tokens if any.
//  * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
//    This is also called when the stop condition is met.
//    Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
static void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
    auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
    // Mark beams as EOS as needed.
    for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
        llama_beam_view& beam_view = beams_state.beam_views[i];
        if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
            beam_view.eob = true;
        }
    }
    printf(",");  // Show progress
    if (const size_t n = beams_state.common_prefix_length) {
        callback_data.response.resize(callback_data.response.size() + n);
        assert(0u < beams_state.n_beams);
        const llama_token * tokens = beams_state.beam_views[0].tokens;
        std::copy(tokens, tokens + n, callback_data.response.end() - n);
        printf("%zu", n);
    }
    fflush(stdout);
#if 1 // DEBUG: print current beams for this iteration
    std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
    for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
        std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
    }
#endif
}

int main(int argc, char ** argv)
{
    gpt_params params;
    //params.n_gpu_layers = 200;

    //---------------------------------
    // Print help :
    //---------------------------------

    if ( argc < 2 || argv[1][0] == '-' )
    {
        printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
        return 1 ;
    }

    //---------------------------------
    // Load parameters :
    //---------------------------------

    params.model = argv[1];

    params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;

    if ( argc > 3 )
    {
        params.prompt = argv[3];
    }

    if ( params.prompt.empty() )
    {
        params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
    }

    //---------------------------------
    // Init LLM :
    //---------------------------------

    llama_backend_init(params.numa);

    llama_model * model;
    llama_context * ctx;

    std::tie(model, ctx) = llama_init_from_gpt_params( params );

    if ( model == NULL )
    {
        fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
        return 1;
    }

    //---------------------------------
    // Tokenize the prompt :
    //---------------------------------

    std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);

    const size_t max_context_size     = llama_n_ctx( ctx );
    const size_t max_tokens_list_size = max_context_size - 4 ;

    if (tokens_list.size() > max_tokens_list_size)
    {
        fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
             __func__ , tokens_list.size() , max_tokens_list_size );
        return 1;
    }

    fprintf( stderr, "\n\n" );

    // Print the tokens from the prompt :

    for( auto id : tokens_list )
    {
        std::cout << llama_token_to_piece(ctx, id);
    }
    std::cout << std::flush;

    int n_past = 0;

    if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0)))
    {
        fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
        return 1;
    }
    n_past += tokens_list.size();

    beam_search_callback_data callback_data{ctx, {}};
    size_t const beam_width = static_cast<size_t>(params.n_beams);
    int const n_predict = 256;
    llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict);

    std::cout << "\n\n";
    for (llama_token const token_id : callback_data.response) {
        std::cout << llama_token_to_piece(ctx,token_id);
    }
    std::cout << std::endl;

    llama_free( ctx );
    llama_free_model( model );

    llama_backend_free();

    return 0;
}