Spaces:
Build error
Build error
File size: 79,835 Bytes
3e5595b 9938c27 dc53b3a 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b f57d7c6 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 f57d7c6 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b f57d7c6 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 f57d7c6 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b dc53b3a 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 9938c27 1e081f1 9938c27 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 9938c27 3e5595b 9938c27 1e081f1 3e5595b f57d7c6 3e5595b 1e081f1 3e5595b f57d7c6 3e5595b f57d7c6 3e5595b dc53b3a 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 dc53b3a 3e5595b dc53b3a 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 dc53b3a 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b 1e081f1 3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 |
//adapted from RWKV.cpp repo under MIT license
// https://github.com/saharNooby/rwkv.cpp
#include "otherarch.h"
#include "rwkv_v3.h"
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#if defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
#include "utils.h"
#include <string>
#include <vector>
#include <cstring>
#include <cinttypes>
#include <cmath>
#include <fstream>
#include <unordered_map>
#include <memory>
#include <utility>
#define _FILE_OFFSET_BITS 64
// Puts an optional break point, if debug is enabled.
#define RWKV_MAYBE_BREAK
#include <sys/stat.h>
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__NT__)
#define stat _stat64
#define fstat _fstat64
#define ftell _ftelli64
#define fseek _fseeki64
#ifndef NDEBUG
#include <intrin.h>
#define RWKV_MAYBE_BREAK __debugbreak()
#endif
#else
#if !defined(__APPLE__)
#define ftell ftello
#define fseek fseeko
#endif
#endif
// --- Error handling ---
thread_local enum rwkv_error_flags global_last_error = RWKV_ERROR_NONE;
thread_local bool global_print_errors = true;
inline enum rwkv_error_flags operator|(enum rwkv_error_flags a, enum rwkv_error_flags b) {
return static_cast<enum rwkv_error_flags>(static_cast<int>(a) | static_cast<int>(b));
}
inline enum rwkv_error_flags operator|=(enum rwkv_error_flags & a, enum rwkv_error_flags b) {
return a = a | b;
}
#define RWKV_MSG(...) do { if (global_print_errors) fprintf(stderr, __VA_ARGS__); } while (0)
#define RWKV_CTX_MSG(ctx, ...) do { if (ctx->print_errors) fprintf(stderr, __VA_ARGS__); } while (0)
// If the condition x is false, adds ERR_VAL to the last error, and returns RET_VAL.
#define RWKV_ASSERT(ERR_VAL, RET_VAL, x) do { \
if (!(x)) { \
global_last_error |= ERR_VAL; \
RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
// If the condition x is false, adds ERR_VAL to the last error, prints a message to stderr, and returns RET_VAL.
#define RWKV_ASSERT_MSG(ERR_VAL, RET_VAL, x, ...) do { \
if (!(x)) { \
global_last_error |= ERR_VAL; \
RWKV_MSG(__VA_ARGS__); \
RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
// If the condition x is false, adds ERR_VAL to the ctx's last error, prints a message to stderr, and returns RET_VAL.
#define RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, RET_VAL, x, ...) do { \
if (!(x)) { \
((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \
RWKV_CTX_MSG(ctx, __VA_ARGS__); \
RWKV_CTX_MSG(ctx, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
// If the condition x is false, adds ERR_VAL to the ctx's last error, and returns RET_VAL.
#define RWKV_CTX_ASSERT(ctx, ERR_VAL, RET_VAL, x) do { \
if (!(x)) { \
((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \
RWKV_CTX_MSG(ctx, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
// If the condition x is false, returns RET_VAL.
#define RWKV_ENSURE(RET_VAL, x) do { \
if (!(x)) { \
RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
// If the condition x is false, prints a message to stderr, and returns RET_VAL.
#define RWKV_ENSURE_MSG(RET_VAL, x, ...) do { \
if (!(x)) { \
RWKV_MSG(__VA_ARGS__); \
RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
// If the condition x is false, prints a message to stderr, and returns RET_VAL.
#define RWKV_CTX_ENSURE_MSG(ctx, RET_VAL, x, ...) do { \
if (!(x)) { \
((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \
RWKV_CTX_MSG(ctx, __VA_ARGS__); \
RWKV_CTX_MSG(ctx, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
RWKV_MAYBE_BREAK; \
return RET_VAL; \
} } while (0)
#define RWKV_ASSERT_FALSE_MSG(ERR_VAL, x, ...) RWKV_ASSERT_MSG(ERR_VAL, false, x, __VA_ARGS__)
#define RWKV_ASSERT_NULL_MSG(ERR_VAL, x, ...) RWKV_ASSERT_MSG(ERR_VAL, NULL, x, __VA_ARGS__)
#define RWKV_CTX_ASSERT_FALSE_MSG(ctx, ERR_VAL, x, ...) RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, false, x, __VA_ARGS__)
#define RWKV_ASSERT_FALSE(ERR_VAL, x) RWKV_ASSERT(ERR_VAL, false, x)
#define RWKV_ASSERT_NULL(ERR_VAL, x) RWKV_ASSERT(ERR_VAL, NULL, x)
#define RWKV_CTX_ASSERT_FALSE(ctx, ERR_VAL, x) RWKV_CTX_ASSERT(ctx, ERR_VAL, false, x)
#define RWKV_ENSURE_OR_FALSE(x) RWKV_ENSURE(false, x)
#define RWKV_ENSURE_OR_NULL(x) RWKV_ENSURE(NULL, x)
#define RWKV_ENSURE_OR_FALSE_MSG(x, ...) RWKV_ENSURE_MSG(false, x, __VA_ARGS__)
// --- Utilities ---
// Reads a single uint32 value from a file.
bool rwkv_fread_uint32(FILE * file, uint32_t & dest) {
return fread((void *) &dest, sizeof(uint32_t), 1, file) == 1;
}
// Reads a single string value from a file.
bool rwkv_fread_string(FILE * file, size_t length, std::string & dest) {
dest.resize(length);
return fread((void *) dest.data(), length, 1, file) == 1;
}
// Reads a single data buffer from a file.
bool rwkv_fread_data(FILE * file, size_t length, void * dest) {
return fread(dest, length, 1, file) == 1;
}
// Writes a single uint32 value to a file.
bool rwkv_fwrite_uint32(FILE * file, const uint32_t value) {
return fwrite((const void *) &value, sizeof(uint32_t), 1, file);
}
// Writes a single string value to a file.
bool rwkv_fwrite_string(FILE * file, const std::string & value) {
return fwrite((const void *) value.data(), value.length(), 1, file) == 1;
}
// Writes a single data buffer to a file.
bool rwkv_fwrite_data(FILE * file, const void * data, const size_t length) {
return fwrite(data, length, 1, file) == 1;
}
// --- File handling ---
#define TYPE_UNKNOWN TYPE_COUNT
enum rwkv_type {
TYPE_FP32,
TYPE_FP16,
TYPE_Q4_0,
TYPE_Q4_1,
TYPE_Q4_1_O, // Unsupported
TYPE_Q4_2, // Unsupported
TYPE_Q4_3, // Unsupported
TYPE_Q5_0,
TYPE_Q5_1,
TYPE_Q8_0,
TYPE_COUNT
};
#define GGML_TYPE_UNKNOWN GGML_TYPE_COUNT
extern const enum ggml_type rwkv_type_to_ggml[TYPE_COUNT + 1] = {
GGML_TYPE_F32, /* FP32 */
GGML_TYPE_F16, /* FP16 */
GGML_TYPE_Q4_0, /* Q4_0 */
GGML_TYPE_Q4_1, /* Q4_1 */
GGML_TYPE_UNKNOWN, /* Q4_1_O */
GGML_TYPE_UNKNOWN, /* Q4_2 */
GGML_TYPE_UNKNOWN, /* Q4_3 */
GGML_TYPE_Q5_0, /* Q5_0 */
GGML_TYPE_Q5_1, /* Q5_1 */
GGML_TYPE_Q8_0, /* Q8_0 */
GGML_TYPE_COUNT /* COUNT */
};
extern const enum rwkv_type rwkv_type_from_ggml[GGML_TYPE_COUNT + 1] = {
TYPE_FP32, /* FP32 */
TYPE_FP16, /* FP16 */
TYPE_Q4_0, /* Q4_0 */
TYPE_Q4_1, /* Q4_1 */
TYPE_Q4_2, /* Q4_2 */
TYPE_Q4_3, /* Q4_3 */
TYPE_Q5_0, /* Q5_0 */
TYPE_Q5_1, /* Q5_1 */
TYPE_Q8_0, /* Q8_0 */
TYPE_COUNT, /* Q8_1 */
TYPE_COUNT, /* I8 */
TYPE_COUNT, /* I16 */
TYPE_COUNT, /* I32 */
TYPE_COUNT, /* COUNT */
};
extern const char * rwkv_type_to_string[TYPE_COUNT + 1] = {"FP32", "FP16", "Q4_0", "Q4_1", "Q4_1_O", "Q4_2", "Q4_3", "Q5_0", "Q5_1", "Q8_0", "unknown"};
enum rwkv_type rwkv_type_from_string(const char * str) {
for (int ord = 0; ord < TYPE_COUNT; ord++) {
if (strcmp(str, rwkv_type_to_string[ord]) == 0) {
return (enum rwkv_type) ord;
}
}
return TYPE_UNKNOWN;
}
struct rwkv_file_header {
uint32_t magic;
uint32_t version;
uint32_t n_vocab;
uint32_t n_embed;
uint32_t n_layer;
uint32_t data_type;
};
bool rwkv_is_file_version_in_range(uint32_t version) {
return version >= RWKV_FILE_VERSION_MIN && version <= RWKV_FILE_VERSION_MAX;
}
bool rwkv_fread_file_header(FILE * file, struct rwkv_file_header & header, bool verify_data_type = true) {
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, sizeof(struct rwkv_file_header), &header));
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_MAGIC, header.magic == RWKV_FILE_MAGIC);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_VERSION, rwkv_is_file_version_in_range(header.version), "Unsupported file version %" PRId32, header.version);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_DATA_TYPE, header.data_type < TYPE_COUNT, "Model data type out of range (%" PRId32 " > %" PRId32 ")", header.data_type, TYPE_COUNT - 1);
if (verify_data_type) {
enum ggml_type ggml_type = rwkv_type_to_ggml[header.data_type];
RWKV_ASSERT_FALSE_MSG(
RWKV_ERROR_DATA_TYPE,
ggml_type != GGML_TYPE_UNKNOWN,
"Models in %s format cannot be loaded anymore because the format was removed.\n"
"You need to quantize the model into another format or use an older version of rwkv.cpp.\n"
"See https://github.com/saharNooby/rwkv.cpp#compatibility for more info",
rwkv_type_to_string[header.data_type]
);
RWKV_ASSERT_FALSE_MSG(
RWKV_ERROR_DATA_TYPE,
(!ggml_is_quantized(ggml_type) || header.version == RWKV_FILE_VERSION_1),
"The quantized model file in %s format was created with an old version of rwkv.cpp and can not be loaded anymore.\n"
"You need to requantize the model or use an older version of rwkv.cpp.\n"
"See https://github.com/saharNooby/rwkv.cpp#compatibility for more info",
rwkv_type_to_string[header.data_type]
);
}
return true;
}
bool rwkv_fwrite_file_header(FILE * file, const struct rwkv_file_header & header) {
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_WRITE, rwkv_fwrite_data(file, &header, sizeof(struct rwkv_file_header)));
return true;
}
struct rwkv_tensor_header {
uint32_t dim_count;
uint32_t key_length;
uint32_t data_type;
uint32_t width;
uint32_t height;
const size_t size() const;
};
struct rwkv_tensor {
struct rwkv_tensor_header header;
std::string name;
uint8_t * data;
};
//rwkv relied on the old ggml_nbytes implementation, so backport it here. Fixes breaking change in PR 2874
size_t rwkv_nbytes_old(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
auto a = tensor->ne[3]*tensor->nb[3];
auto b = (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
return ((a) > (b) ? (a) : (b));
}
bool rwkv_fread_tensor_header(FILE * file, struct rwkv_tensor_header & header) {
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, sizeof(struct rwkv_tensor_header) - sizeof(uint32_t), &header));
header.height = 1;
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_SHAPE, header.dim_count == 1 || header.dim_count == 2, "Tensor has an invalid shape (%" PRId32 " dimensions)", header.dim_count);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_DATA_TYPE, header.data_type < TYPE_COUNT, "Tensor data type out of range (%" PRId32 " > %" PRId32 ")", header.data_type, TYPE_COUNT - 1);
RWKV_ASSERT_FALSE_MSG(
RWKV_ERROR_DATA_TYPE,
rwkv_type_to_ggml[header.data_type] != GGML_TYPE_UNKNOWN,
"Tensor data type (%s) is no longer supported",
rwkv_type_to_string[header.data_type]
);
if (header.dim_count == 2) {
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_uint32(file, header.height));
}
return true;
}
bool rwkv_fwrite_tensor_header(FILE * file, const struct rwkv_tensor_header & header) {
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_WRITE, rwkv_fwrite_data(file, &header, sizeof(struct rwkv_tensor_header) - (header.dim_count == 1 ? sizeof(uint32_t) : 0)));
return true;
}
bool rwkv_fskip_tensor_data(FILE * file, const struct rwkv_tensor_header & header) {
return fseek(file, header.key_length + header.size(), SEEK_CUR) == 0;
}
bool rwkv_fread_tensor_header_and_skip(FILE * file, struct rwkv_tensor_header & header) {
RWKV_ENSURE_OR_FALSE(rwkv_fread_tensor_header(file, header));
RWKV_ASSERT_FALSE(RWKV_ERROR_DATA, rwkv_fskip_tensor_data(file, header));
return true;
}
bool rwkv_fread_tensor_data(FILE * file, struct rwkv_tensor & output, void * buffer = NULL) {
size_t data_size = output.header.size();
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_string(file, output.header.key_length, output.name));
if (buffer) {
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, data_size, buffer));
} else {
output.data = NULL;
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fskip_tensor_data(file, output.header));
}
return true;
}
bool rwkv_fread_tensor(FILE * file, struct rwkv_tensor & output, void * buffer = NULL) {
RWKV_ENSURE_OR_FALSE(rwkv_fread_tensor_header(file, output.header));
RWKV_ENSURE_OR_FALSE(rwkv_fread_tensor_data(file, output, buffer));
return true;
}
bool rwkv_fread_ggml_tensor_data(FILE * file, const struct rwkv_tensor_header & header, struct ggml_context * ctx, std::string & name, struct ggml_tensor *& tensor) {
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_READ, rwkv_fread_string(file, header.key_length, name), "Failed to read tensor name");
enum ggml_type ggml_type = rwkv_type_to_ggml[header.data_type];
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_UNSUPPORTED, ggml_type != GGML_TYPE_UNKNOWN, "Unsupported tensor data type %s from %s", rwkv_type_to_string[header.data_type], name.c_str());
tensor = header.dim_count == 1
? ggml_new_tensor_1d(ctx, ggml_type, header.width)
: ggml_new_tensor_2d(ctx, ggml_type, header.width, header.height);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, tensor, "Failed to allocate tensor");
ggml_set_name(tensor, name.c_str());
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, rwkv_nbytes_old(tensor), tensor->data), "Failed to read tensor data from %s", name.c_str());
return true;
}
bool rwkv_fread_ggml_tensor(FILE * file, struct ggml_context * ctx, std::string & name, struct ggml_tensor *& tensor) {
struct rwkv_tensor_header header;
RWKV_ENSURE_OR_FALSE_MSG(rwkv_fread_tensor_header(file, header), "Invalid tensor header");
return rwkv_fread_ggml_tensor_data(file, header, ctx, name, tensor);
}
bool rwkv_fwrite_tensor(FILE * file, const struct rwkv_tensor & tensor) {
RWKV_ENSURE_OR_FALSE(rwkv_fwrite_tensor_header(file, tensor.header));
RWKV_ENSURE_OR_FALSE(rwkv_fwrite_string(file, tensor.name));
RWKV_ENSURE_OR_FALSE(rwkv_fwrite_data(file, tensor.data, tensor.header.size()));
return true;
}
// --- Model definition ---
struct rwkv_layer {
struct ggml_tensor * ln1_weight;
struct ggml_tensor * ln1_bias;
// RWKV, also called "attention" by the author.
struct ggml_tensor * att_time_mix_k;
struct ggml_tensor * att_time_mix_v;
struct ggml_tensor * att_time_mix_r;
struct ggml_tensor * att_time_first;
struct ggml_tensor * att_time_decay;
struct ggml_tensor * att_key;
struct ggml_tensor * att_value;
struct ggml_tensor * att_receptance;
struct ggml_tensor * att_output;
struct ggml_tensor * ln2_weight;
struct ggml_tensor * ln2_bias;
// FFN.
struct ggml_tensor * ffn_time_mix_k;
struct ggml_tensor * ffn_time_mix_r;
struct ggml_tensor * ffn_key;
struct ggml_tensor * ffn_value;
struct ggml_tensor * ffn_receptance;
};
struct rwkv_model {
struct rwkv_file_header header;
struct ggml_tensor * emb;
struct ggml_tensor * ln0_weight;
struct ggml_tensor * ln0_bias;
std::unique_ptr<struct rwkv_layer[]> layers;
struct ggml_tensor * ln_out_weight;
struct ggml_tensor * ln_out_bias;
struct ggml_tensor * head;
};
// --- Operators ---
void rwkv_exp_impl(const int n_cols, float * dest, const float * src) {
for (int i = 0; i < n_cols; i++) {
dest[i] = expf(src[i]);
}
}
void rwkv_1_minus_x_impl(const int n_cols, float * dest, const float * src) {
for (int i = 0; i < n_cols; i++) {
dest[i] = 1.0F - src[i];
}
}
void rwkv_sigmoid_impl(const int n_cols, float * dest, const float * src) {
for (int i = 0; i < n_cols; i++) {
dest[i] = 1.0F / (1.0F + expf(-src[i]));
}
}
void rwkv_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) {
for (int i = 0; i < n_cols; i++) {
dest[i] = fmaxf(src0[i], src1[i]);
}
}
struct ggml_tensor * rwkv_exp(ggml_context * ctx, struct ggml_tensor * x) {
return ggml_map_unary_f32(ctx, x, rwkv_exp_impl);
}
struct ggml_tensor * rwkv_1_minus_x(ggml_context * ctx, struct ggml_tensor * x) {
return ggml_map_unary_f32(ctx, x, rwkv_1_minus_x_impl);
}
struct ggml_tensor * rwkv_sigmoid(ggml_context * ctx, struct ggml_tensor * x) {
return ggml_map_unary_f32(ctx, x, rwkv_sigmoid_impl);
}
struct ggml_tensor * rwkv_max(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * y) {
return ggml_map_binary_f32(ctx, x, y, rwkv_max_impl);
}
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
return ggml_add_inplace(ctx, ggml_mul_inplace(ctx, ggml_norm(ctx, x, default_norm_eps), weight), bias);
}
// --- Implementation ---
// Used as a helper during rwkv_ctx_size calculation.
struct rwkv_future_tensor;
// Used to calculate the memory usage of ggml contexts before allocating them.
// Since ggml uses an internal bump allocator that can't be grown at runtime, we need to ensure we have enough space,
// while at the same time not using more memory than necessary.
struct rwkv_future_ctx {
size_t objects_count = 0;
size_t memory_size = 0;
size_t scratch_size = 0;
// Align to GGML_MEM_ALIGN, which can currently be up to 16
static const size_t align(const size_t size) {
return ((size + 15) & ~15);
}
void add_objects(const size_t size, const size_t count = 1) {
this->objects_count += count;
if (size && count) {
this->add_memory(size, count);
}
}
void add_memory(const size_t size, const size_t count = 1) {
this->memory_size += this->align(size) * count;
}
void add_scratch(const size_t size, const size_t count = 1) {
this->scratch_size += this->align(size) * count;
}
void add_data(const bool use_scratch, const size_t size, const size_t count = 1) {
if (use_scratch) {
this->add_scratch(size, count);
} else {
this->add_memory(size, count);
}
}
struct rwkv_future_tensor declare(const enum ggml_type type, const uint64_t width, const uint64_t height = 1);
struct rwkv_future_tensor alloc(const enum ggml_type type, const uint64_t width, const uint64_t height = 1, const bool use_scratch = true);
};
struct rwkv_future_tensor {
enum ggml_type type = GGML_TYPE_COUNT;
uint64_t width = 0;
uint64_t height = 0;
static const size_t size(const enum ggml_type type, const uint64_t width, const uint64_t height) {
struct ggml_tensor decoy {};
decoy.type = type;
decoy.ne[0] = width;
decoy.ne[1] = height;
decoy.ne[2] = 1;
decoy.ne[3] = 1;
return rwkv_nbytes_old(&decoy);
}
rwkv_future_tensor() {}
rwkv_future_tensor(const enum ggml_type type, const uint64_t width, const uint64_t height = 1): type(type), width(width), height(height) {}
rwkv_future_tensor(const struct ggml_tensor * ref): type(ref->type), width(ref->ne[0]), height(ref->ne[1]) {}
struct rwkv_future_tensor alloc(struct rwkv_future_ctx & ctx, const bool use_scratch = true) const {
ctx.add_objects(sizeof(struct ggml_tensor));
ctx.add_data(use_scratch, rwkv_future_tensor::size(type, width, height));
return *this;
}
struct rwkv_future_tensor view(struct rwkv_future_ctx & ctx) const {
ctx.add_objects(sizeof(struct ggml_tensor));
return *this;
}
struct rwkv_future_tensor subview(struct rwkv_future_ctx & ctx, const uint32_t width, const uint32_t height = 1) const {
ctx.add_objects(sizeof(struct ggml_tensor), 2);
ctx.add_memory(sizeof(uint32_t) * 2);
return rwkv_future_tensor(type, width, height);
}
struct rwkv_future_tensor dup(struct rwkv_future_ctx & ctx) const {
return this->alloc(ctx);
}
struct rwkv_future_tensor layer_norm(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & weight, const struct rwkv_future_tensor & bias) const {
return this->dup(ctx).view(ctx).view(ctx);
}
struct rwkv_future_tensor repeat(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor reference) const {
return reference.dup(ctx);
}
struct rwkv_future_tensor set_inplace(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor src) {
ctx.add_objects(sizeof(struct ggml_tensor));
ctx.add_memory(sizeof(uint32_t) * 5);
return this->view(ctx);
}
struct rwkv_future_tensor consume(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) {
return this->view(ctx);
}
struct rwkv_future_tensor combine(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) const {
return this->dup(ctx);
}
struct rwkv_future_tensor fn(struct rwkv_future_ctx & ctx) const {
ctx.add_objects(sizeof(struct ggml_tensor));
ctx.add_memory(sizeof(void *) / sizeof(uint32_t));
return this->dup(ctx);
}
struct rwkv_future_tensor mul_mat(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) const {
return ctx.alloc(GGML_TYPE_F32, this->height, other.height);
}
struct rwkv_future_tensor get_rows(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) const {
return ctx.alloc(GGML_TYPE_F32, this->width, other.width);
}
};
const size_t rwkv_tensor_header::size() const {
return rwkv_future_tensor::size(rwkv_type_to_ggml[this->data_type], this->width, this->height);
}
struct rwkv_future_tensor rwkv_future_ctx::declare(const enum ggml_type type, const uint64_t width, const uint64_t height) {
return rwkv_future_tensor(type, width, height);
}
struct rwkv_future_tensor rwkv_future_ctx::alloc(const enum ggml_type type, const uint64_t width, const uint64_t height, const bool use_scratch) {
return this->declare(type, width, height).alloc(*this, use_scratch);
}
struct rwkv_ggml_context {
std::unique_ptr<uint8_t[]> scratch;
struct ggml_context * ctx;
rwkv_ggml_context(): ctx(NULL) {}
rwkv_ggml_context(const struct rwkv_future_ctx future_ctx): ctx(NULL) {
scratch.reset(new(std::nothrow) uint8_t[future_ctx.scratch_size]);
if (!scratch) {
return;
}
const size_t memory_required_overhead = size_t(128) * 1024 * 1024;
const size_t memory_required_overhead_sc = size_t(64) * 1024 * 1024;
ctx = ggml_init({ future_ctx.objects_count * GGML_OBJECT_SIZE + future_ctx.memory_size + memory_required_overhead, NULL, false});
if (!ctx) {
return;
}
ggml_set_scratch(ctx, { 0, memory_required_overhead_sc + future_ctx.scratch_size, scratch.get() });
}
struct rwkv_ggml_context & operator=(struct rwkv_ggml_context && source) {
scratch.reset(source.scratch.release());
std::swap(ctx, source.ctx);
return *this;
}
~rwkv_ggml_context() {
if (ctx) {
ggml_free(ctx);
}
}
};
// An instance of an RWKV model loaded into memory.
// Contains all the model weights.
// Shared by one or more contexts.
struct rwkv_instance {
struct rwkv_ggml_context ctx;
struct rwkv_model model;
// TODO Come up with a better solution to estimate "work tensor" size
// The ggml_cgraph allocates a "work tensor" the first time it is used.
// Currently, the height of blocks.0.ffn.key.weight is the bottleneck in our implementation of RWKV.
// Since it is the largest dimension used in any matrix multiply, it is the size used for the "work tensor".
// However, if ggml changes its implementation, or rwkv.cpp changes its own implementation, at any point,
// this may become outdated. We need to find a way not to hardcode a specific tensor, but to calculate accurately.
// This may come out of a ggml issue: https://github.com/ggerganov/ggml/issues/214
size_t ffn_key_size;
};
// The hidden state of a single RWKV layer.
// These are mostly used for dividing up the input state, and writing portions of the output state.
// But they're also used in building the computation graphs to represent the operations
// used from input->output (operating "in place" on a rwkv_layer_state).
struct rwkv_layer_state {
struct ggml_tensor * ffn_xx;
struct ggml_tensor * att_xx;
struct ggml_tensor * att_aa;
struct ggml_tensor * att_bb;
struct ggml_tensor * att_pp;
};
// Holds a single computation graph and its ggml context.
// Graphs each have their own context so that they can be individually freed and rebuilt.
// Graphs read hidden state from the rwkv_context and then write it back to the rwkv_context.
// (see rwkv_context.input_layers and rwkv_context.output_layers)
struct rwkv_graph {
struct rwkv_ggml_context ctx;
struct ggml_tensor * tokens;
// ggml_cgraph is so large that it can cause stack overflows if not stored on the heap
std::unique_ptr<struct ggml_cgraph> cgraph;
size_t pre_logits_nodes;
size_t pre_logits_leafs;
size_t post_logits_nodes;
size_t post_logits_leafs;
};
// RWKV context for a specific instance.
// Contains computation graphs and is used for inference.
struct rwkv_context {
std::shared_ptr<struct rwkv_instance> instance;
// Reused by all graphs.
struct rwkv_ggml_context ctx;
struct ggml_tensor * input_state;
std::unique_ptr<struct rwkv_layer_state[]> input_layers;
struct ggml_tensor * output_state;
std::unique_ptr<struct rwkv_layer_state[]> output_layers;
struct ggml_tensor * logits;
uint32_t n_threads;
// The serial graph implements the traditional RNN mode that processes only one token at a time (serial mode).
struct rwkv_graph serial_graph;
// The sequence graph implements the "sequence mode" (or transformer/GPT mode) that processes multiple tokens at a time.
// This can be an order of magnitude or so faster than serial execution if used properly.
size_t sequence_len;
struct rwkv_graph sequence_graph;
enum rwkv_error_flags last_error;
bool print_errors;
float * state_in = 0; //stores input state, or use null for a new state
float * state_out = 0; //stores address of output state buffer
float * logits_out = 0; //stores address of output logit buffer
size_t gpu_layers;
std::vector<uint8_t> work_buffer;
};
// https://stackoverflow.com/a/6458689
template<typename F>
bool rwkv_set_params(struct rwkv_model & model, F callback) {
RWKV_ENSURE_OR_FALSE(callback("emb.weight", model.emb));
RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.weight", model.ln0_weight));
RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.bias", model.ln0_bias));
uint32_t n_layer = model.header.n_layer;
std::unique_ptr<struct rwkv_layer[]> layers(new(std::nothrow) struct rwkv_layer[n_layer]);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, layers.get(), "Failed to allocate model layers");
model.layers = std::move(layers);
for (uint32_t i = 0; i < n_layer; i++) {
char buffer[128];
size_t offset = sprintf(buffer, "blocks.%" PRId32 ".", i);
rwkv_layer & layer = model.layers[i];
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.weight"), buffer), layer.ln1_weight));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.bias"), buffer), layer.ln1_bias));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_k"), buffer), layer.att_time_mix_k));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_v"), buffer), layer.att_time_mix_v));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_r"), buffer), layer.att_time_mix_r));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_first"), buffer), layer.att_time_first));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_decay"), buffer), layer.att_time_decay));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.key.weight"), buffer), layer.att_key));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.value.weight"), buffer), layer.att_value));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.receptance.weight"), buffer), layer.att_receptance));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.output.weight"), buffer), layer.att_output));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.weight"), buffer), layer.ln2_weight));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.bias"), buffer), layer.ln2_bias));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_k"), buffer), layer.ffn_time_mix_k));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_r"), buffer), layer.ffn_time_mix_r));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.key.weight"), buffer), layer.ffn_key));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.value.weight"), buffer), layer.ffn_value));
RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.receptance.weight"), buffer), layer.ffn_receptance));
}
RWKV_ENSURE_OR_FALSE(callback("ln_out.weight", model.ln_out_weight));
RWKV_ENSURE_OR_FALSE(callback("ln_out.bias", model.ln_out_bias));
RWKV_ENSURE_OR_FALSE(callback("head.weight", model.head));
return true;
}
void rwkv_future_carry_x(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor weight,
const struct rwkv_future_tensor bias,
struct rwkv_future_tensor & x,
struct rwkv_future_tensor & x_prev,
struct rwkv_future_tensor & carry
) {
if (x.height == 1) {
x = x.layer_norm(ctx, weight, bias);
x_prev = carry;
carry = x;
} else {
x = x.layer_norm(ctx, weight.repeat(ctx, x), bias.repeat(ctx, x));
x_prev = x.dup(ctx)
.set_inplace(ctx, carry)
.set_inplace(ctx, x.subview(ctx, x.width, x.height - 1));
carry = x.subview(ctx, x.width);
}
}
void rwkv_carry_x(struct ggml_context * ctx,
struct ggml_tensor * weight,
struct ggml_tensor * bias,
struct ggml_tensor *& x,
struct ggml_tensor *& x_prev,
struct ggml_tensor *& carry
) {
const size_t n_embed = x->ne[0];
const size_t sequence_len = x->ne[1];
if (sequence_len == 1) {
// self.layer_norm(x, self.w.blocks[i].ln2)
x = rwkv_layer_norm(ctx, x, weight, bias);
// xx = state[5*i+0]
x_prev = carry;
// state[5*i+0] = x
carry = x;
} else {
// self.layer_norm(x, self.w.blocks[i].ln2)
x = rwkv_layer_norm(ctx, x, ggml_repeat(ctx, weight, x), ggml_repeat(ctx, bias, x));
// xx = torch.cat((state[5*i+0].to(dtype=self.FLOAT_MODE).unsqueeze(0), x[:-1,:]))
x_prev = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embed, sequence_len);
x_prev = ggml_set_1d_inplace(ctx, x_prev, carry, 0);
x_prev = ggml_set_1d_inplace(ctx, x_prev, ggml_view_1d(ctx, x, n_embed * (sequence_len - 1), 0), n_embed * sizeof(float));
// state[5*i+0] = x[-1,:]
carry = ggml_view_1d(ctx, x, n_embed, n_embed * (sequence_len - 1) * sizeof(float));
}
}
void rwkv_future_att_rkv(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor time_mix_k,
const struct rwkv_future_tensor time_mix_v,
const struct rwkv_future_tensor time_mix_r,
const struct rwkv_future_tensor x,
const struct rwkv_future_tensor x_prev,
const struct rwkv_future_tensor att_r,
const struct rwkv_future_tensor att_k,
const struct rwkv_future_tensor att_v,
struct rwkv_future_tensor & r,
struct rwkv_future_tensor & k,
struct rwkv_future_tensor & v
) {
const struct rwkv_future_tensor xk = x.combine(ctx, time_mix_k).consume(ctx, x_prev.combine(ctx, time_mix_k.fn(ctx)));
const struct rwkv_future_tensor xv = x.combine(ctx, time_mix_v).consume(ctx, x_prev.combine(ctx, time_mix_v.fn(ctx)));
const struct rwkv_future_tensor xr = x.combine(ctx, time_mix_r).consume(ctx, x_prev.combine(ctx, time_mix_r.fn(ctx)));
r = att_r.mul_mat(ctx, xr).fn(ctx);
k = att_k.mul_mat(ctx, xk);
v = att_v.mul_mat(ctx, xv);
}
void rwkv_att_rkv(
struct ggml_context * ctx,
struct rwkv_layer layer,
struct ggml_tensor * x,
struct ggml_tensor * x_prev,
struct ggml_tensor *& r,
struct ggml_tensor *& k,
struct ggml_tensor *& v
) {
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
struct ggml_tensor * xk = ggml_add_inplace(ctx,
ggml_mul(ctx, x, layer.att_time_mix_k),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k))
);
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
struct ggml_tensor * xv = ggml_add_inplace(ctx,
ggml_mul(ctx, x, layer.att_time_mix_v),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v))
);
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
struct ggml_tensor * xr = ggml_add_inplace(ctx,
ggml_mul(ctx, x, layer.att_time_mix_r),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r))
);
// r = torch.sigmoid(rw @ xr)
r = rwkv_sigmoid(ctx, ggml_mul_mat(ctx, layer.att_receptance, xr));
// k = kw @ xk
k = ggml_mul_mat(ctx, layer.att_key, xk);
// v = vw @ xv
v = ggml_mul_mat(ctx, layer.att_value, xv);
}
struct rwkv_future_tensor rwkv_future_att_wkv(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor time_first,
const struct rwkv_future_tensor time_decay,
struct rwkv_future_tensor & aa,
struct rwkv_future_tensor & bb,
struct rwkv_future_tensor & pp,
const struct rwkv_future_tensor k,
const struct rwkv_future_tensor v
) {
struct rwkv_future_tensor ww = time_first.combine(ctx, k);
struct rwkv_future_tensor qq = pp.fn(ctx);
struct rwkv_future_tensor e1 = pp.combine(ctx, qq).fn(ctx);
struct rwkv_future_tensor e2 = ww.combine(ctx, qq).fn(ctx);
struct rwkv_future_tensor a = e1.combine(ctx, aa).consume(ctx, e2.combine(ctx, v));
struct rwkv_future_tensor b = e1.combine(ctx, bb).consume(ctx, e2);
ww = pp.combine(ctx, time_decay);
qq = ww.fn(ctx);
e1 = ww.combine(ctx, qq).fn(ctx);
e2 = k.combine(ctx, qq).fn(ctx);
// aa, bb
aa = e1.combine(ctx, aa).consume(ctx, e2.combine(ctx, v));
bb = e1.combine(ctx, bb).consume(ctx, e2);
pp = qq;
// wkv
return a.combine(ctx, b);
}
struct ggml_tensor * rwkv_att_wkv(
struct ggml_context * ctx,
struct ggml_tensor * att_time_first,
struct ggml_tensor * att_time_decay,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor *& aa,
struct ggml_tensor *& bb,
struct ggml_tensor *& pp
) {
// ww = time_first + k
struct ggml_tensor * ww = ggml_add(ctx, att_time_first, k);
// qq = torch.maximum(pp, ww)
struct ggml_tensor * qq = rwkv_max(ctx, pp, ww);
// e1 = torch.exp(pp - qq)
struct ggml_tensor * e1 = rwkv_exp(ctx, ggml_sub(ctx, pp, qq));
// e2 = torch.exp(ww - qq)
struct ggml_tensor * e2 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
// a = e1 * aa + e2 * v
struct ggml_tensor * a = ggml_add_inplace(ctx, ggml_mul(ctx, e1, aa), ggml_mul(ctx, e2, v));
// b = e1 * bb + e2
struct ggml_tensor * b = ggml_add_inplace(ctx, ggml_mul(ctx, e1, bb), e2);
// ww = pp + time_decay
ww = ggml_add(ctx, pp, att_time_decay);
// qq = torch.maximum(ww, k)
qq = rwkv_max(ctx, ww, k);
// e1 = torch.exp(ww - qq)
e1 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
// e2 = torch.exp(k[t] - qq)
e2 = rwkv_exp(ctx, ggml_sub(ctx, k, qq));
// state[5 * i + 2] = e1 * aa + e2 * v
// state[5 * i + 3] = e1 * bb + e2
// state[5 * i + 4] = qq
aa = ggml_add_inplace(ctx, ggml_mul(ctx, e1, aa), ggml_mul(ctx, e2, v));
bb = ggml_add_inplace(ctx, ggml_mul(ctx, e1, bb), e2);
pp = qq;
// wkv = a / b
return ggml_div(ctx, a, b);
}
struct rwkv_future_tensor rwkv_future_att(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor ln1_weight,
const struct rwkv_future_tensor ln1_bias,
const struct rwkv_future_tensor time_mix_k,
const struct rwkv_future_tensor time_mix_v,
const struct rwkv_future_tensor time_mix_r,
const struct rwkv_future_tensor time_first,
const struct rwkv_future_tensor time_decay,
const struct rwkv_future_tensor att_r,
const struct rwkv_future_tensor att_k,
const struct rwkv_future_tensor att_v,
const struct rwkv_future_tensor att_output,
struct rwkv_future_tensor x,
struct rwkv_future_tensor & att_xx,
struct rwkv_future_tensor & att_aa,
struct rwkv_future_tensor & att_bb,
struct rwkv_future_tensor & att_pp
) {
struct rwkv_future_tensor x_prev;
rwkv_future_carry_x(ctx, ln1_weight, ln1_bias, x, x_prev, att_xx);
struct rwkv_future_tensor r, k, v;
rwkv_future_att_rkv(ctx, time_mix_k, time_mix_v, time_mix_r, x, x_prev, att_r, att_k, att_v, r, k, v);
struct rwkv_future_tensor wkv = rwkv_future_att_wkv(ctx, time_first, time_decay, att_aa, att_bb, att_pp, k, v);
return att_output.mul_mat(ctx, r.combine(ctx, wkv));
}
struct ggml_tensor * rwkv_att(struct ggml_context * ctx, struct ggml_tensor * x, struct rwkv_layer layer, struct rwkv_layer_state & state) {
struct ggml_tensor * x_prev;
rwkv_carry_x(ctx, layer.ln1_weight, layer.ln1_bias, x, x_prev, state.att_xx);
struct ggml_tensor * r, * k, * v;
rwkv_att_rkv(ctx, layer, x, x_prev, r, k, v);
struct ggml_tensor * wkv = rwkv_att_wkv(ctx, layer.att_time_first, layer.att_time_decay, k, v, state.att_aa, state.att_bb, state.att_pp);
// ow @ (r * xx)
return ggml_mul_mat(ctx, layer.att_output, ggml_mul(ctx, r, wkv));
}
struct rwkv_future_tensor rwkv_future_ffn(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor ln2_weight,
const struct rwkv_future_tensor ln2_bias,
const struct rwkv_future_tensor time_mix_k,
const struct rwkv_future_tensor time_mix_r,
const struct rwkv_future_tensor ffn_k,
const struct rwkv_future_tensor ffn_v,
const struct rwkv_future_tensor ffn_r,
struct rwkv_future_tensor x,
struct rwkv_future_tensor & ffn_xx
) {
struct rwkv_future_tensor x_prev;
rwkv_future_carry_x(ctx, ln2_weight, ln2_bias, x, x_prev, ffn_xx);
struct rwkv_future_tensor xk = x.combine(ctx, time_mix_k).consume(ctx, x_prev.combine(ctx, time_mix_k.fn(ctx)));
struct rwkv_future_tensor xr = x.combine(ctx, time_mix_r).consume(ctx, x_prev.combine(ctx, time_mix_r.fn(ctx)));
struct rwkv_future_tensor r = ffn_r.mul_mat(ctx, xr).fn(ctx);
struct rwkv_future_tensor k = ffn_k.mul_mat(ctx, xk).view(ctx).view(ctx);
return r.consume(ctx, ffn_v.mul_mat(ctx, k));
}
struct ggml_tensor * rwkv_ffn(struct ggml_context * ctx, struct ggml_tensor * x, struct rwkv_layer layer, struct rwkv_layer_state & state) {
struct ggml_tensor * x_prev;
rwkv_carry_x(ctx, layer.ln2_weight, layer.ln2_bias, x, x_prev, state.ffn_xx);
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
struct ggml_tensor * xk = ggml_add_inplace(
ctx,
ggml_mul(ctx, x, layer.ffn_time_mix_k),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k))
);
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
struct ggml_tensor * xr = ggml_add_inplace(
ctx,
ggml_mul(ctx, x, layer.ffn_time_mix_r),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r))
);
// r = torch.sigmoid(rw @ xr)
struct ggml_tensor * r = rwkv_sigmoid(ctx, ggml_mul_mat(ctx, layer.ffn_receptance, xr));
// k = torch.square(torch.relu(kw @ xk))
struct ggml_tensor * k = ggml_sqr_inplace(ctx, ggml_relu_inplace(ctx, ggml_mul_mat(ctx, layer.ffn_key, xk)));
// r * (vw @ k)
return ggml_mul_inplace(ctx, r, ggml_mul_mat(ctx, layer.ffn_value, k));
}
struct rwkv_future_tensor rwkv_future_graph_work(struct rwkv_future_ctx & ctx,
const enum ggml_type type,
const size_t ffn_key_height,
const size_t n_threads,
const size_t sequence_len = 1
) {
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
enum ggml_type mul_mat_type = type == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16;
#else
enum ggml_type mul_mat_type = ggml_is_quantized(type) ? GGML_TYPE_Q8_1 : type;
#endif
return ctx.alloc(GGML_TYPE_I8, rwkv_future_tensor::size(mul_mat_type, ffn_key_height, sequence_len) * n_threads + 64 * (n_threads - 1));
}
struct rwkv_future_tensor rwkv_future_serial_graph(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor tokens,
const size_t n_threads,
const struct rwkv_future_tensor emb,
const struct rwkv_future_tensor ln0_weight,
const struct rwkv_future_tensor ln0_bias,
const size_t n_layer,
const struct rwkv_future_tensor ln1_weight,
const struct rwkv_future_tensor ln1_bias,
const struct rwkv_future_tensor att_time_mix_k,
const struct rwkv_future_tensor att_time_mix_v,
const struct rwkv_future_tensor att_time_mix_r,
const struct rwkv_future_tensor att_time_first,
const struct rwkv_future_tensor att_time_decay,
const struct rwkv_future_tensor att_r,
const struct rwkv_future_tensor att_k,
const struct rwkv_future_tensor att_v,
const struct rwkv_future_tensor att_output,
struct rwkv_future_tensor & att_xx,
struct rwkv_future_tensor & att_aa,
struct rwkv_future_tensor & att_bb,
struct rwkv_future_tensor & att_pp,
const struct rwkv_future_tensor ln2_weight,
const struct rwkv_future_tensor ln2_bias,
const struct rwkv_future_tensor ffn_time_mix_k,
const struct rwkv_future_tensor ffn_time_mix_r,
const struct rwkv_future_tensor ffn_k,
const struct rwkv_future_tensor ffn_v,
const struct rwkv_future_tensor ffn_r,
struct rwkv_future_tensor & ffn_xx,
const struct rwkv_future_tensor ln_out_weight,
const struct rwkv_future_tensor ln_out_bias,
const struct rwkv_future_tensor head
) {
struct rwkv_future_tensor x = emb.get_rows(ctx, tokens).layer_norm(ctx, ln0_weight, ln0_bias);
for (size_t i = 0; i < n_layer; i++) {
x = x.consume(ctx, rwkv_future_att(ctx,
ln1_weight, ln1_bias, att_time_mix_k, att_time_mix_v, att_time_mix_r, att_time_first, att_time_decay,
att_r, att_k, att_v, att_output, x, att_xx, att_aa, att_bb, att_pp));
x = x.consume(ctx, rwkv_future_ffn(ctx,
ln2_weight, ln2_bias, ffn_time_mix_k, ffn_time_mix_r, ffn_k, ffn_v, ffn_r, x, ffn_xx));
ffn_xx.view(ctx);
att_xx.view(ctx);
att_aa.view(ctx);
att_bb.view(ctx);
att_pp.view(ctx);
}
x = x.layer_norm(ctx, ln_out_weight, ln_out_bias);
rwkv_future_graph_work(ctx, ffn_k.type, ffn_k.height, n_threads, tokens.width);
return head.mul_mat(ctx, x).view(ctx);
}
bool rwkv_build_serial_graph(
struct ggml_context * ctx,
struct rwkv_model & model,
struct ggml_tensor * tokens,
struct rwkv_layer_state * inputs,
struct rwkv_layer_state * outputs,
struct ggml_tensor * logits,
struct ggml_cgraph * cgraph,
size_t * const pre_logits_nodes,
size_t * const pre_logits_leafs,
size_t * const post_logits_nodes,
size_t * const post_logits_leafs
) {
// x = self.w.emb.weight[token]
struct ggml_tensor * x = ggml_get_rows(ctx, model.emb, tokens);
// x = self.layer_norm(x, self.w.blocks[0].ln0)
x = rwkv_layer_norm(ctx, x, model.ln0_weight, model.ln0_bias);
for (size_t i = 0; i < model.header.n_layer; i++) {
struct rwkv_layer & layer = model.layers[i];
struct rwkv_layer_state state = inputs[i];
x = ggml_add_inplace(ctx, x, rwkv_att(ctx, x, layer, state));
x = ggml_add_inplace(ctx, x, rwkv_ffn(ctx, x, layer, state));
struct rwkv_layer_state & output = outputs[i];
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.ffn_xx, output.ffn_xx));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_xx, output.att_xx));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_aa, output.att_aa));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_bb, output.att_bb));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_pp, output.att_pp));
}
*pre_logits_nodes = cgraph->n_nodes;
*pre_logits_leafs = cgraph->n_leafs;
// x = self.layer_norm(x[-1,:], self.w.ln_out)
x = rwkv_layer_norm(ctx, x, model.ln_out_weight, model.ln_out_bias);
// x = (self.w.head.weight @ x).float()
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, ggml_mul_mat(ctx, model.head, x), logits));
*post_logits_nodes = cgraph->n_nodes;
*post_logits_leafs = cgraph->n_leafs;
return true;
}
struct rwkv_future_tensor rwkv_future_sequence_graph(struct rwkv_future_ctx & ctx,
const struct rwkv_future_tensor tokens,
const size_t n_threads,
const struct rwkv_future_tensor emb,
const struct rwkv_future_tensor ln0_weight,
const struct rwkv_future_tensor ln0_bias,
const size_t n_layer,
const struct rwkv_future_tensor ln1_weight,
const struct rwkv_future_tensor ln1_bias,
const struct rwkv_future_tensor att_time_mix_k,
const struct rwkv_future_tensor att_time_mix_v,
const struct rwkv_future_tensor att_time_mix_r,
const struct rwkv_future_tensor att_time_first,
const struct rwkv_future_tensor att_time_decay,
const struct rwkv_future_tensor att_r,
const struct rwkv_future_tensor att_k,
const struct rwkv_future_tensor att_v,
const struct rwkv_future_tensor att_output,
struct rwkv_future_tensor & att_xx,
struct rwkv_future_tensor & att_aa,
struct rwkv_future_tensor & att_bb,
struct rwkv_future_tensor & att_pp,
const struct rwkv_future_tensor ln2_weight,
const struct rwkv_future_tensor ln2_bias,
const struct rwkv_future_tensor ffn_time_mix_k,
const struct rwkv_future_tensor ffn_time_mix_r,
const struct rwkv_future_tensor ffn_k,
const struct rwkv_future_tensor ffn_v,
const struct rwkv_future_tensor ffn_r,
struct rwkv_future_tensor & ffn_xx,
const struct rwkv_future_tensor ln_out_weight,
const struct rwkv_future_tensor ln_out_bias,
const struct rwkv_future_tensor head
) {
struct rwkv_future_tensor x = emb.get_rows(ctx, tokens);
x = x.layer_norm(ctx, ln0_weight.repeat(ctx, x), ln0_bias.repeat(ctx, x));
for (size_t i = 0; i < n_layer; i++) {
struct rwkv_future_tensor x0 = x, x_prev;
rwkv_future_carry_x(ctx, ln1_weight, ln1_bias, x0, x_prev, att_xx);
struct rwkv_future_tensor r, k, v;
rwkv_future_att_rkv(ctx, att_time_mix_k, att_time_mix_v, att_time_mix_r, x0, x_prev, att_r, att_k, att_v, r, k, v);
for (size_t i = 0; i < tokens.width; i++) {
struct rwkv_future_tensor kt = k.subview(ctx, emb.width);
struct rwkv_future_tensor vt = v.subview(ctx, emb.width);
struct rwkv_future_tensor xt = x_prev.subview(ctx, emb.width);
struct rwkv_future_tensor wkv = rwkv_future_att_wkv(ctx, att_time_first, att_time_decay, att_aa, att_bb, att_pp, k, v);
wkv.view(ctx);
}
x = x.consume(ctx, att_output.mul_mat(ctx, r.combine(ctx, x_prev)));
x = x.consume(ctx, rwkv_future_ffn(ctx, ln2_weight, ln2_bias, ffn_time_mix_k, ffn_time_mix_r, ffn_k, ffn_v, ffn_r, x, ffn_xx));
ffn_xx.view(ctx);
att_xx.view(ctx);
att_aa.view(ctx);
att_bb.view(ctx);
att_pp.view(ctx);
}
x = x.subview(ctx, emb.width).layer_norm(ctx, ln_out_weight, ln_out_bias);
rwkv_future_graph_work(ctx, ffn_k.type, ffn_k.height, n_threads, tokens.width);
return head.mul_mat(ctx, x).view(ctx);
}
bool rwkv_build_sequence_graph(
struct ggml_context * ctx,
struct rwkv_model & model,
struct ggml_tensor * tokens,
struct rwkv_layer_state * inputs,
struct rwkv_layer_state * outputs,
struct ggml_tensor * logits,
struct ggml_cgraph * cgraph,
size_t * const pre_logits_nodes,
size_t * const pre_logits_leafs,
size_t * const post_logits_nodes,
size_t * const post_logits_leafs
) {
const uint32_t n_embed = model.header.n_embed;
const size_t sequence_len = tokens->ne[0];
struct ggml_tensor * x = ggml_get_rows(ctx, model.emb, tokens);
x = rwkv_layer_norm(ctx, x, ggml_repeat(ctx, model.ln0_weight, x), ggml_repeat(ctx, model.ln0_bias, x));
for (size_t i = 0; i < model.header.n_layer; i++) {
struct rwkv_layer & layer = model.layers[i];
struct rwkv_layer_state state = inputs[i];
struct ggml_tensor * x0 = x, * x_prev;
rwkv_carry_x(ctx, layer.ln1_weight, layer.ln1_bias, x0, x_prev, state.att_xx);
struct ggml_tensor * r, * k, * v;
rwkv_att_rkv(ctx, layer, x0, x_prev, r, k, v);
ggml_build_forward_expand(cgraph, r);
for (uint32_t t = 0; t < sequence_len; t++) {
struct ggml_tensor * kt = ggml_view_1d(ctx, k, n_embed, n_embed * sizeof(float) * t);
struct ggml_tensor * vt = ggml_view_1d(ctx, v, n_embed, n_embed * sizeof(float) * t);
struct ggml_tensor * xt = ggml_view_1d(ctx, x_prev, n_embed, n_embed * sizeof(float) * t);
struct ggml_tensor * wkv = rwkv_att_wkv(ctx, layer.att_time_first, layer.att_time_decay, kt, vt, state.att_aa, state.att_bb, state.att_pp);
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, wkv, xt));
}
x = ggml_add_inplace(ctx, x, ggml_mul_mat(ctx, layer.att_output, ggml_mul(ctx, r, x_prev)));
x = ggml_add_inplace(ctx, x, rwkv_ffn(ctx, x, layer, state));
struct rwkv_layer_state & output = outputs[i];
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.ffn_xx, output.ffn_xx));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_xx, output.att_xx));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_aa, output.att_aa));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_bb, output.att_bb));
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_pp, output.att_pp));
}
*pre_logits_nodes = cgraph->n_nodes;
*pre_logits_leafs = cgraph->n_leafs;
// x = self.layer_norm(x[-1,:], self.w.ln_out)
x = rwkv_layer_norm(ctx, ggml_view_1d(ctx, x, n_embed, n_embed * sizeof(float) * (sequence_len - 1)), model.ln_out_weight, model.ln_out_bias);
// x = (self.w.head.weight @ x).float()
ggml_build_forward_expand(cgraph, ggml_cpy(ctx, ggml_mul_mat(ctx, model.head, x), logits));
*post_logits_nodes = cgraph->n_nodes;
*post_logits_leafs = cgraph->n_leafs;
return true;
}
void rwkv_set_print_errors(struct rwkv_context * ctx, bool print_errors) {
bool * ptr = ctx ? &ctx->print_errors : &global_print_errors;
*ptr = print_errors;
}
bool rwkv_get_print_errors(struct rwkv_context * ctx) {
return ctx ? ctx->print_errors : global_print_errors;
}
enum rwkv_error_flags rwkv_get_last_error(struct rwkv_context * ctx) {
enum rwkv_error_flags * ptr = ctx ? &ctx->last_error : &global_last_error;
enum rwkv_error_flags value = *ptr;
*ptr = RWKV_ERROR_NONE;
return value;
}
struct rwkv_file {
FILE * file;
rwkv_file(FILE * file): file(file) {}
~rwkv_file() {
if (file) {
fclose(file);
}
}
};
bool rwkv_instance_from_file(const char * file_path, struct rwkv_instance & instance) {
struct stat file_stat;
struct rwkv_model model;
struct rwkv_ggml_context ctx;
size_t ffn_key_size = 0;
std::unordered_map<std::string, struct ggml_tensor *> parameters;
{
rwkv_file file(fopen(file_path, "rb"));
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file.file, "Failed to open file %s", file_path);
// Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to get the file length.
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat(fileno(file.file), &file_stat) == 0, "Failed to stat file %s", file_path);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE, rwkv_fread_file_header(file.file, model.header), "Invalid file header");
struct rwkv_tensor_header tensor_header;
std::string name;
struct rwkv_future_ctx future_ctx;
while ((size_t) ftell(file.file) < (size_t) file_stat.st_size) {
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_tensor_header(file.file, tensor_header), "Invalid tensor header");
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_string(file.file, tensor_header.key_length, name), "Failed to read tensor name");
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_READ, fseek(file.file, tensor_header.size(), SEEK_CUR) == 0, "Failed to read tensor data");
future_ctx.alloc(rwkv_type_to_ggml[tensor_header.data_type], tensor_header.width, tensor_header.height);
if (ffn_key_size == 0 && name == "blocks.0.ffn.key.weight") {
ffn_key_size = tensor_header.height;
}
}
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_PARAM_MISSING, ffn_key_size, "Model is missing parameter blocks.0.ffn.key.weight");
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_READ, fseek(file.file, sizeof(struct rwkv_file_header), SEEK_SET) == 0, "Failed to seek in file");
ctx = future_ctx;
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, ctx.ctx, "Failed to allocate model context");
struct ggml_tensor * tensor;
while ((size_t) ftell(file.file) < (size_t) file_stat.st_size) {
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_ggml_tensor(file.file, ctx.ctx, name, tensor), "Failed to read model params");
parameters[std::move(name)] = tensor;
}
}
std::unordered_map<std::string, struct ggml_tensor *> & parameters_ref = parameters;
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_PARAM_MISSING, rwkv_set_params(model, [&](const char * key, struct ggml_tensor *& dest) {
struct ggml_tensor * tensor = parameters_ref[key];
RWKV_ENSURE_OR_FALSE_MSG(tensor, "Model parameter %s not found", key);
dest = tensor;
return true;
}));
// Verify order of dimensions
struct ggml_tensor * emb = model.emb;
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[0] == model.header.n_embed, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[0]);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[1] == model.header.n_vocab, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[1]);
instance.ctx = std::move(ctx);
instance.model = std::move(model);
instance.ffn_key_size = ffn_key_size;
return true;
}
struct rwkv_context * rwkv_new_context_impl(std::shared_ptr<struct rwkv_instance> instance, const uint32_t n_threads) {
global_last_error = RWKV_ERROR_NONE;
struct rwkv_file_header & header = instance->model.header;
const size_t n_vocab = header.n_vocab;
const size_t n_embed = header.n_embed;
const size_t n_layer = header.n_layer;
struct rwkv_future_ctx future_ctx;
const struct rwkv_future_tensor future_input = future_ctx.alloc(GGML_TYPE_F32, n_embed * 5 * n_layer);
const struct rwkv_future_tensor future_output = future_ctx.alloc(GGML_TYPE_F32, n_embed * 5 * n_layer);
const struct rwkv_future_tensor future_logits = future_ctx.alloc(GGML_TYPE_F32, n_vocab);
for (size_t i = 0; i < n_layer; i++) {
/* ffn_xx */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed);
/* att_xx */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed);
/* att_aa */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed);
/* att_bb */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed);
/* att_pp */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed);
}
struct rwkv_ggml_context ctx(future_ctx);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, ctx.ctx, "Failed to allocate model context");
struct ggml_tensor * input = ggml_new_tensor_1d(ctx.ctx, GGML_TYPE_F32, n_embed * 5 * n_layer);
struct ggml_tensor * output = ggml_new_tensor_1d(ctx.ctx, GGML_TYPE_F32, n_embed * 5 * n_layer);
// We collect parts of input state here. Each part is (n_embed) vector.
std::unique_ptr<struct rwkv_layer_state[]> inputs(new(std::nothrow) struct rwkv_layer_state[n_layer]);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, inputs.get(), "Failed to allocate input state parts");
// We collect parts of output state here. Each part is (n_embed) vector.
std::unique_ptr<struct rwkv_layer_state[]> outputs(new(std::nothrow) struct rwkv_layer_state[n_layer]);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, outputs.get(), "Failed to allocate output state parts");
for (size_t i = 0; i < n_layer; i++) {
struct rwkv_layer_state & input_state = inputs[i];
input_state.ffn_xx = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 0) * sizeof(float));
input_state.att_xx = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 1) * sizeof(float));
input_state.att_aa = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 2) * sizeof(float));
input_state.att_bb = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 3) * sizeof(float));
input_state.att_pp = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 4) * sizeof(float));
struct rwkv_layer_state & output_state = outputs[i];
output_state.ffn_xx = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 0) * sizeof(float));
output_state.att_xx = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 1) * sizeof(float));
output_state.att_aa = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 2) * sizeof(float));
output_state.att_bb = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 3) * sizeof(float));
output_state.att_pp = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 4) * sizeof(float));
}
struct ggml_tensor * logits = ggml_new_tensor_1d(ctx.ctx, GGML_TYPE_F32, n_vocab);
struct rwkv_future_ctx graph_future_ctx;
const struct rwkv_future_tensor future_token = graph_future_ctx.alloc(GGML_TYPE_I32, 1, 1, false);
const struct rwkv_model & model = instance->model;
const struct rwkv_layer & layer = model.layers[0];
const struct rwkv_layer_state & state = inputs[0];
struct rwkv_future_tensor ffn_xx = state.ffn_xx;
struct rwkv_future_tensor att_xx = state.att_xx;
struct rwkv_future_tensor att_aa = state.att_aa;
struct rwkv_future_tensor att_bb = state.att_bb;
struct rwkv_future_tensor att_pp = state.att_pp;
const struct rwkv_future_tensor future_graph = rwkv_future_serial_graph(graph_future_ctx, future_token, n_threads,
model.emb,
model.ln0_weight, model.ln0_bias,
n_layer,
layer.ln1_weight, layer.ln1_bias,
layer.att_time_mix_k, layer.att_time_mix_v, layer.att_time_mix_r,
layer.att_time_first, layer.att_time_decay,
layer.att_receptance, layer.att_key, layer.att_value, layer.att_output,
att_xx, att_aa, att_bb, att_pp,
layer.ln2_weight, layer.ln2_bias,
layer.ffn_time_mix_k, layer.ffn_time_mix_r,
layer.ffn_key, layer.ffn_value, layer.ffn_receptance,
ffn_xx,
model.ln_out_weight, model.ln_out_weight,
model.head
);
struct rwkv_graph serial_graph;
serial_graph.ctx = graph_future_ctx;
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, serial_graph.ctx.ctx, "Failed to allocate serial graph context");
serial_graph.tokens = ggml_new_i32(serial_graph.ctx.ctx, 0);
serial_graph.cgraph.reset(new(std::nothrow) struct ggml_cgraph());
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, serial_graph.cgraph, "Failed to allocate serial graph");
RWKV_ASSERT_NULL(RWKV_ERROR_GRAPH, rwkv_build_serial_graph(
serial_graph.ctx.ctx, instance->model,
serial_graph.tokens, inputs.get(), outputs.get(), logits,
serial_graph.cgraph.get(),
&serial_graph.pre_logits_nodes, &serial_graph.pre_logits_leafs, &serial_graph.post_logits_nodes, &serial_graph.post_logits_leafs
));
std::unique_ptr<struct rwkv_context> rwkv_ctx(new(std::nothrow) struct rwkv_context());
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, rwkv_ctx, "Failed to allocate rwkv_context");
rwkv_ctx->instance = std::move(instance);
rwkv_ctx->ctx = std::move(ctx);
rwkv_ctx->input_state = input;
rwkv_ctx->input_layers = std::move(inputs);
rwkv_ctx->output_state = output;
rwkv_ctx->output_layers = std::move(outputs);
rwkv_ctx->logits = logits;
rwkv_ctx->n_threads = n_threads;
rwkv_ctx->serial_graph = std::move(serial_graph);
rwkv_ctx->last_error = RWKV_ERROR_NONE;
rwkv_ctx->print_errors = global_print_errors;
return rwkv_ctx.release();
}
struct rwkv_context * rwkv_init_from_file(const char * file_path, const uint32_t n_threads) {
global_last_error = RWKV_ERROR_NONE;
std::shared_ptr<struct rwkv_instance> instance(new(std::nothrow) struct rwkv_instance());
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, instance, "Failed to allocate instance");
RWKV_ENSURE_OR_NULL(rwkv_instance_from_file(file_path, *instance.get()));
return rwkv_new_context_impl(instance, n_threads);
}
struct rwkv_context * rwkv_clone_context(struct rwkv_context * ctx, const uint32_t n_threads) {
struct rwkv_context * clone = rwkv_new_context_impl(ctx->instance, n_threads);
if (clone) {
clone->print_errors = ctx->print_errors;
}
return clone;
}
bool rwkv_gpu_offload_layers(struct rwkv_context * ctx, const uint32_t n_layers) {
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
printf("\nOffloading %u (or fewer) layers...",n_layers);
const auto offload = [&](struct ggml_tensor * tensor) {
// TODO support multi-GPU
tensor->backend = GGML_BACKEND_GPU;
#if defined(GGML_USE_CLBLAST)
ggml_cl_transform_tensor(tensor->data, tensor);
#else
ggml_cuda_transform_tensor(tensor->data, tensor);
#endif
};
const size_t n_gpu = std::min(n_layers, ctx->instance->model.header.n_layer);
if (ctx->gpu_layers < n_gpu) {
for (size_t & i = ctx->gpu_layers; i < n_gpu; i++) {
const struct rwkv_layer & layer = ctx->instance->model.layers[i];
// TODO also offload other operations to GPU with ggml_cuda_assign_buffers
offload(layer.att_key);
offload(layer.att_value);
offload(layer.att_receptance);
offload(layer.att_output);
offload(layer.ffn_key);
offload(layer.ffn_value);
offload(layer.ffn_receptance);
}
return true;
}
#endif
return false;
}
void rwkv_set_inputs(const struct rwkv_context * ctx, const float * state_in) {
if (state_in) {
memcpy(ctx->input_state->data, state_in, rwkv_nbytes_old(ctx->input_state));
} else {
rwkv_init_state(ctx, (float *) ctx->input_state->data);
}
}
void rwkv_get_outputs(const struct rwkv_context * ctx, float * state_out, float * logits_out) {
if (state_out) {
memcpy(state_out, ctx->output_state->data, rwkv_nbytes_old(ctx->output_state));
}
if (logits_out) {
memcpy(logits_out, ctx->logits->data, rwkv_nbytes_old(ctx->logits));
}
}
bool rwkv_eval(struct rwkv_context * ctx, const int n_threads, const uint32_t token, const float * state_in, float * state_out, float * logits_out) {
ctx->last_error = RWKV_ERROR_NONE;
const struct rwkv_file_header & header = ctx->instance->model.header;
const size_t n_vocab = header.n_vocab;
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < n_vocab, "Token (%" PRId32 ") is out of range (0 .. %zu)", token, n_vocab - 1);
rwkv_set_inputs(ctx, state_in);
ggml_set_i32(ctx->serial_graph.tokens, token);
// Short circuit computation of logits if nobody actually cares
if (!logits_out) {
ctx->serial_graph.cgraph->n_nodes = ctx->serial_graph.pre_logits_nodes;
ctx->serial_graph.cgraph->n_leafs = ctx->serial_graph.pre_logits_leafs;
} else {
ctx->serial_graph.cgraph->n_nodes = ctx->serial_graph.post_logits_nodes;
ctx->serial_graph.cgraph->n_leafs = ctx->serial_graph.post_logits_leafs;
}
kcpp_graph_compute_helper(ctx->serial_graph.cgraph.get(),n_threads);
rwkv_get_outputs(ctx, state_out, logits_out);
return true;
}
bool rwkv_eval_sequence(struct rwkv_context * ctx, const int n_threads, const uint32_t * sequence, const size_t sequence_len, const float * state_in, float * state_out, float * logits_out) {
ctx->last_error = RWKV_ERROR_NONE;
const struct rwkv_file_header & header = ctx->instance->model.header;
const size_t n_vocab = header.n_vocab;
const size_t n_embed = header.n_embed;
const size_t n_layer = header.n_layer;
if (sequence) {
for (size_t i = 0; i < sequence_len; i++) {
const uint32_t token = sequence[i];
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < n_vocab, "Token at index %zu (%" PRId32 ") is out of range (0 .. %zu)", i, token, n_vocab - 1);
}
}
if (ctx->sequence_len != sequence_len) {
// Build new sequence graph
struct rwkv_future_ctx graph_future_ctx;
const struct rwkv_future_tensor future_tokens = graph_future_ctx.alloc(GGML_TYPE_I32, sequence_len);
const struct rwkv_model & model = ctx->instance->model;
const struct rwkv_layer & layer = model.layers[0];
const struct rwkv_layer_state & state = ctx->input_layers[0];
struct rwkv_future_tensor ffn_xx = state.ffn_xx;
struct rwkv_future_tensor att_xx = state.att_xx;
struct rwkv_future_tensor att_aa = state.att_aa;
struct rwkv_future_tensor att_bb = state.att_bb;
struct rwkv_future_tensor att_pp = state.att_pp;
const struct rwkv_future_tensor future_graph = rwkv_future_sequence_graph(graph_future_ctx, future_tokens, 1,
model.emb,
model.ln0_weight, model.ln0_bias,
n_layer,
layer.ln1_weight, layer.ln1_bias,
layer.att_time_mix_k, layer.att_time_mix_v, layer.att_time_mix_r,
layer.att_time_first, layer.att_time_decay,
layer.att_receptance, layer.att_key, layer.att_value, layer.att_output,
att_xx, att_aa, att_bb, att_pp,
layer.ln2_weight, layer.ln2_bias,
layer.ffn_time_mix_k, layer.ffn_time_mix_r,
layer.ffn_key, layer.ffn_value, layer.ffn_receptance,
ffn_xx,
model.ln_out_weight, model.ln_out_weight,
model.head
);
struct rwkv_graph sequence_graph;
sequence_graph.ctx = graph_future_ctx;
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, sequence_graph.ctx.ctx, "Failed to allocate sequence graph context");
sequence_graph.tokens = ggml_new_tensor_1d(sequence_graph.ctx.ctx, GGML_TYPE_I32, sequence_len);
sequence_graph.cgraph.reset(new(std::nothrow) struct ggml_cgraph());
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, sequence_graph.cgraph, "Failed to allocate sequence graph");
RWKV_ASSERT_FALSE(RWKV_ERROR_GRAPH, rwkv_build_sequence_graph(
sequence_graph.ctx.ctx, ctx->instance->model,
sequence_graph.tokens, ctx->input_layers.get(), ctx->output_layers.get(), ctx->logits,
sequence_graph.cgraph.get(),
&sequence_graph.pre_logits_nodes, &sequence_graph.pre_logits_leafs, &sequence_graph.post_logits_nodes, &sequence_graph.post_logits_leafs
));
ctx->sequence_len = sequence_len;
ctx->sequence_graph = std::move(sequence_graph);
}
// Allow building the sequence graph without actually evaluating, by specifying sequence = NULL.
if (sequence) {
rwkv_set_inputs(ctx, state_in);
memcpy(ctx->sequence_graph.tokens->data, sequence, sequence_len * sizeof(uint32_t));
// Short circuit computation of logits if nobody actually cares
if (!logits_out) {
ctx->sequence_graph.cgraph->n_nodes = ctx->sequence_graph.pre_logits_nodes;
ctx->sequence_graph.cgraph->n_leafs = ctx->sequence_graph.pre_logits_leafs;
} else {
ctx->sequence_graph.cgraph->n_nodes = ctx->sequence_graph.post_logits_nodes;
ctx->sequence_graph.cgraph->n_leafs = ctx->sequence_graph.post_logits_leafs;
}
kcpp_graph_compute_helper(ctx->sequence_graph.cgraph.get(),n_threads);
rwkv_get_outputs(ctx, state_out, logits_out);
}
return true;
}
// Provided for compatibility.
extern "C" RWKV_API uint32_t rwkv_get_state_buffer_element_count(const struct rwkv_context * ctx) {
return rwkv_get_state_len(ctx);
}
// Provided for compatibility.
extern "C" RWKV_API uint32_t rwkv_get_logits_buffer_element_count(const struct rwkv_context * ctx) {
return rwkv_get_logits_len(ctx);
}
size_t rwkv_get_n_vocab(const struct rwkv_context * ctx) {
return (size_t) ctx->instance->model.header.n_vocab;
}
size_t rwkv_get_n_embed(const struct rwkv_context * ctx) {
return (size_t) ctx->instance->model.header.n_embed;
}
size_t rwkv_get_n_layer(const struct rwkv_context * ctx) {
return (size_t) ctx->instance->model.header.n_layer;
}
size_t rwkv_get_state_len(const struct rwkv_context * ctx) {
const struct rwkv_file_header & header = ctx->instance->model.header;
return (size_t) header.n_embed * 5 * (size_t) header.n_layer;
}
size_t rwkv_get_logits_len(const struct rwkv_context * ctx) {
return (size_t) ctx->instance->model.header.n_vocab;
}
void rwkv_init_state(const struct rwkv_context * ctx, float * state) {
const struct rwkv_file_header & header = ctx->instance->model.header;
const size_t layer_size = (size_t) header.n_embed * 5;
const size_t layer_zero = (size_t) header.n_embed * 4;
const size_t layers_size = (size_t) header.n_layer * layer_size;
for (size_t start = 0; start < layers_size; start += layer_size) {
for (size_t i = 0; i < layer_zero; i++) {
state[start + i] = 0.0F;
}
for (size_t i = layer_zero; i < layer_size; i++) {
state[start + i] = -1e30F;
}
}
}
void rwkv_free(struct rwkv_context * ctx) {
std::unique_ptr<struct rwkv_context> rwkv_ctx(ctx);
}
bool rwkv_quantize_model_file(const char * in_path, const char * out_path, const char * type_name) {
global_last_error = RWKV_ERROR_NONE;
enum ggml_type out_type = rwkv_type_to_ggml[rwkv_type_from_string(type_name)];
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ARGS | RWKV_ERROR_DATA_TYPE, ggml_is_quantized(out_type), "Unsupported output data type (%s)", rwkv_type_to_string[rwkv_type_from_ggml[out_type]]);
RWKV_MSG("Loading model from '%s'\n", in_path);
struct stat in_stat;
struct rwkv_file in_file(fopen(in_path, "rb"));
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, in_file.file, "Failed to open %s for reading", in_path);
// Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to the get file length.
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat(fileno(in_file.file), &in_stat) == 0, "failed to stat file %s", in_path);
struct rwkv_file out_file(fopen(out_path, "wb"));
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, out_file.file, "Failed to open %s for writing", out_path);
struct rwkv_file_header in_header;
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, rwkv_fread_file_header(in_file.file, in_header), "Invalid file header");
enum ggml_type in_type = rwkv_type_to_ggml[in_header.data_type];
RWKV_ASSERT_FALSE_MSG(
RWKV_ERROR_FILE,
in_type == GGML_TYPE_F32 || in_type == GGML_TYPE_F16,
"Unsupported input data type (%s); needs to be FP32 or FP16",
rwkv_type_to_string[rwkv_type_from_ggml[in_type]]
);
struct rwkv_file_header out_header = in_header;
out_header.version = RWKV_FILE_VERSION;
out_header.data_type = rwkv_type_from_ggml[out_type];
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, rwkv_fwrite_file_header(out_file.file, out_header), "Failed to write file header");
// Process parameters
size_t orig_total_size = 0;
size_t new_total_size = 0;
// Required to init the F16 tables
// Doesn't crash if ggml_init fails
ggml_free(ggml_init({ 0, NULL, true }));
size_t max_in_size = 0;
size_t max_out_size = 0;
size_t max_key_length = 0;
while (ftell(in_file.file) < in_stat.st_size) {
struct rwkv_tensor_header header;
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, rwkv_fread_tensor_header_and_skip(in_file.file, header));
size_t in_size = header.size();
if (in_size > max_in_size) {
max_in_size = in_size;
}
// f16 type tensors get relocated to out and then converted into f32 at in
if (header.data_type == TYPE_FP16) {
if (in_size > max_out_size) {
max_out_size = in_size;
}
size_t f32_size = rwkv_future_tensor::size(GGML_TYPE_F32, header.width, header.height);
if (f32_size > max_in_size) {
max_in_size = f32_size;
}
}
size_t out_size = rwkv_future_tensor::size(out_type, header.width, header.height);
if (out_size > max_out_size) {
max_out_size = out_size;
}
if (header.key_length > max_key_length) {
max_key_length = header.key_length;
}
}
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_READ, fseek(in_file.file, sizeof(struct rwkv_file_header), SEEK_SET) == 0, "Failed to seek in file");
// This is a histogram of quantized values. If it shows single 1.0, then all 0.0, something went very wrong!
int64_t hist_all[16] {};
std::unique_ptr<uint8_t[]> scratch(new(std::nothrow) uint8_t[max_in_size + max_out_size]);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, scratch.get(), "Failed to allocate buffer");
uint8_t * in_buf = scratch.get();
uint8_t * out_buf = in_buf + max_in_size;
struct rwkv_tensor tensor;
struct rwkv_tensor_header & header = tensor.header;
std::string & name = tensor.name;
uint8_t *& data = tensor.data;
while (ftell(in_file.file) < in_stat.st_size) {
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_tensor_header(in_file.file, header), "Failed to read tensor header");
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_string(in_file.file, header.key_length, name), "Failed to read tensor name");
const char * name_str = name.c_str();
RWKV_MSG("%*s - [%5" PRId32 ", %5" PRId32 "], type = %6s ", (int) max_key_length, name_str, header.width, header.height, rwkv_type_to_string[header.data_type]);
data = header.data_type == TYPE_FP16 ? out_buf : in_buf;
size_t orig_size = header.size(), new_size = orig_size;
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_data(in_file.file, orig_size, data), "\nFailed to read tensor data of %s", name_str);
// Quantize only 2D tensors, except embedding and head matrices.
// Embedding and head take not too much space, especially in bigger models;
// but they significantly increase perplexity when quantized.
if ((header.data_type == TYPE_FP32 || header.data_type == TYPE_FP16) && header.dim_count == 2 && name != "emb.weight" && name != "head.weight") {
RWKV_MSG("quantizing... ");
size_t nelements = (size_t) header.width * (size_t) header.height;
if (header.data_type == TYPE_FP16) {
ggml_fp16_to_fp32_row((const ggml_fp16_t *) out_buf, (float *) in_buf, nelements);
}
int64_t hist_cur[16] {};
new_size = ggml_quantize_chunk(out_type, (const float *) in_buf, out_buf, 0, nelements, hist_cur);
header.data_type = rwkv_type_from_ggml[out_type];
data = out_buf;
RWKV_MSG("size = %8.2f MB -> %8.2f MB | hist: ", orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
for (int i = 0; i < 16; i++) {
RWKV_MSG("%5.3f ", hist_cur[i] / (float) nelements);
hist_all[i] += hist_cur[i];
}
RWKV_MSG("\n");
} else {
RWKV_MSG("size = %8.3f MB\n", orig_size / 1024.0 / 1024.0);
}
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_WRITE, rwkv_fwrite_tensor(out_file.file, tensor), "Failed to write tensor %s", name_str);
orig_total_size += orig_size;
new_total_size += new_size;
}
RWKV_MSG("original size = %8.2f MB\n", orig_total_size / 1024.0 / 1024.0);
RWKV_MSG("quantized size = %8.2f MB\n", new_total_size / 1024.0 / 1024.0);
RWKV_MSG("compression ratio = %8.2f\n", orig_total_size / float(new_total_size));
int64_t sum_all = 0;
for (int i = 0; i < 16; i++) {
sum_all += hist_all[i];
}
RWKV_MSG("hist: ");
for (int i = 0; i < 16; ++i) {
printf("%5.3f ", hist_all[i] / float(sum_all));
}
RWKV_MSG("\n");
return true;
}
const char * rwkv_get_system_info_string(void) {
static std::string s;
s = "";
s += "AVX=" + std::to_string(ggml_cpu_has_avx()) + " ";
s += "AVX2=" + std::to_string(ggml_cpu_has_avx2()) + " ";
s += "AVX512=" + std::to_string(ggml_cpu_has_avx512()) + " ";
s += "FMA=" + std::to_string(ggml_cpu_has_fma()) + " ";
s += "NEON=" + std::to_string(ggml_cpu_has_neon()) + " ";
s += "ARM_FMA=" + std::to_string(ggml_cpu_has_arm_fma()) + " ";
s += "F16C=" + std::to_string(ggml_cpu_has_f16c()) + " ";
s += "FP16_VA=" + std::to_string(ggml_cpu_has_fp16_va()) + " ";
s += "WASM_SIMD=" + std::to_string(ggml_cpu_has_wasm_simd()) + " ";
s += "BLAS=" + std::to_string(ggml_cpu_has_blas()) + " ";
s += "SSE3=" + std::to_string(ggml_cpu_has_sse3()) + " ";
s += "VSX=" + std::to_string(ggml_cpu_has_vsx());
return s.c_str();
} |