Spaces:
Build error
Build error
File size: 41,434 Bytes
3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
#pragma once
//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
// - a set of tensor operations
// - automatic differentiation
// - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
// - linear regression
// - support vector machines
// - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
// {
// struct ggml_v2_init_params params = {
// .mem_size = 16*1024*1024,
// .mem_buffer = NULL,
// };
//
// // memory allocation happens here
// struct ggml_v2_context * ctx = ggml_v2_init(params);
//
// struct ggml_v2_tensor * x = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, 1);
//
// ggml_v2_set_param(ctx, x); // x is an input variable
//
// struct ggml_v2_tensor * a = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, 1);
// struct ggml_v2_tensor * b = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, 1);
// struct ggml_v2_tensor * x2 = ggml_v2_mul(ctx, x, x);
// struct ggml_v2_tensor * f = ggml_v2_add(ctx, ggml_v2_mul(ctx, a, x2), b);
//
// ...
// }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
// {
// ...
//
// struct ggml_v2_cgraph gf = ggml_v2_build_forward(f);
//
// // set the input variable and parameter values
// ggml_v2_set_f32(x, 2.0f);
// ggml_v2_set_f32(a, 3.0f);
// ggml_v2_set_f32(b, 4.0f);
//
// ggml_v2_graph_compute(ctx0, &gf);
//
// printf("f = %f\n", ggml_v2_get_f32_1d(f, 0));
//
// ...
// }
//
// The actual computation is performed in the ggml_v2_graph_compute() function.
//
// The ggml_v2_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_v2_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_v2_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_v2_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_v2_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
// - ggml_v2_permute()
// - ggml_v2_conv_1d_1s()
// - ggml_v2_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
// What is Automatic Differentiation?
// https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_v2_tensor)
//
// The tensors are stored in memory via the ggml_v2_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
// {
// struct ggml_v2_tensor * c = ggml_v2_add(ctx, a, b);
//
// assert(c->src[0] == a);
// assert(c->src[1] == b);
// }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_v2_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
// {
// struct ggml_v2_tensor * a = ggml_v2_new_tensor_2d(ctx, GGML_V2_TYPE_F32, 2, 3);
//
// // a[1, 2] = 1.0f;
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
//
// // a[2, 0] = 2.0f;
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
//
// ...
// }
//
// Alternatively, there are helper functions, such as ggml_v2_get_f32_1d() and ggml_v2_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_v2_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//
#ifdef GGML_V2_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_V2_BUILD
# define GGML_V2_API __declspec(dllexport)
# else
# define GGML_V2_API __declspec(dllimport)
# endif
# else
# define GGML_V2_API __attribute__ ((visibility ("default")))
# endif
#else
# define GGML_V2_API
#endif
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#define GGML_V2_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_V2_FILE_VERSION 1
#define GGML_V2_QNT_VERSION 1 // bump this on quantization format changes
#define GGML_V2_QNT_VERSION_FACTOR 1000 // do not change this
#define GGML_V2_MAX_DIMS 4
#define GGML_V2_MAX_NODES 4096
#define GGML_V2_MAX_PARAMS 256
#define GGML_V2_MAX_CONTEXTS 64
#define GGML_V2_MAX_OPT 4
#define GGML_V2_DEFAULT_N_THREADS 4
#define GGML_V2_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "GGML_V2_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
typedef __fp16 ggml_v2_fp16_t;
#else
typedef uint16_t ggml_v2_fp16_t;
#endif
// convert FP16 <-> FP32
GGML_V2_API float ggml_v2_fp16_to_fp32(ggml_v2_fp16_t x);
GGML_V2_API ggml_v2_fp16_t ggml_v2_fp32_to_fp16(float x);
GGML_V2_API void ggml_v2_fp16_to_fp32_row(const ggml_v2_fp16_t * x, float * y, size_t n);
GGML_V2_API void ggml_v2_fp32_to_fp16_row(const float * x, ggml_v2_fp16_t * y, size_t n);
struct ggml_v2_object;
struct ggml_v2_context;
enum ggml_v2_type {
GGML_V2_TYPE_F32 = 0,
GGML_V2_TYPE_F16 = 1,
GGML_V2_TYPE_Q4_0 = 2,
GGML_V2_TYPE_Q4_1 = 3,
GGML_V2_TYPE_Q4_2 = 4, //support has been removed
GGML_V2_TYPE_Q4_3 = 5, //support has been removed
GGML_V2_TYPE_Q5_0 = 6,
GGML_V2_TYPE_Q5_1 = 7,
GGML_V2_TYPE_Q8_0 = 8,
GGML_V2_TYPE_Q8_1 = 9,
GGML_V2_TYPE_I8,
GGML_V2_TYPE_I16,
GGML_V2_TYPE_I32,
GGML_V2_TYPE_Q8_1B = 13, //legacy q8_1
GGML_V2_TYPE_COUNT,
};
enum ggml_v2_backend {
GGML_V2_BACKEND_CPU = 0,
GGML_V2_BACKEND_CUDA = 1,
GGML_V2_BACKEND_CL = 2,
};
// model file types
enum ggml_v2_ftype {
GGML_V2_FTYPE_UNKNOWN = -1,
GGML_V2_FTYPE_ALL_F32 = 0,
GGML_V2_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
GGML_V2_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
GGML_V2_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
};
// available tensor operations:
enum ggml_v2_op {
GGML_V2_OP_NONE = 0,
GGML_V2_OP_DUP,
GGML_V2_OP_ADD,
GGML_V2_OP_ADD1,
GGML_V2_OP_ACC,
GGML_V2_OP_SUB,
GGML_V2_OP_MUL,
GGML_V2_OP_DIV,
GGML_V2_OP_SQR,
GGML_V2_OP_SQRT,
GGML_V2_OP_LOG,
GGML_V2_OP_SUM,
GGML_V2_OP_SUM_ROWS,
GGML_V2_OP_MEAN,
GGML_V2_OP_REPEAT,
GGML_V2_OP_ABS,
GGML_V2_OP_SGN,
GGML_V2_OP_NEG,
GGML_V2_OP_STEP,
GGML_V2_OP_RELU,
GGML_V2_OP_GELU,
GGML_V2_OP_SILU,
GGML_V2_OP_SILU_BACK,
GGML_V2_OP_NORM, // normalize
GGML_V2_OP_RMS_NORM,
GGML_V2_OP_RMS_NORM_BACK,
GGML_V2_OP_MUL_MAT,
GGML_V2_OP_SCALE,
GGML_V2_OP_SET,
GGML_V2_OP_CPY,
GGML_V2_OP_CONT,
GGML_V2_OP_RESHAPE,
GGML_V2_OP_VIEW,
GGML_V2_OP_PERMUTE,
GGML_V2_OP_TRANSPOSE,
GGML_V2_OP_GET_ROWS,
GGML_V2_OP_GET_ROWS_BACK,
GGML_V2_OP_DIAG,
GGML_V2_OP_DIAG_MASK_INF,
GGML_V2_OP_DIAG_MASK_ZERO,
GGML_V2_OP_SOFT_MAX,
GGML_V2_OP_ROPE,
GGML_V2_OP_ROPE_BACK,
GGML_V2_OP_ALIBI,
GGML_V2_OP_CONV_1D_1S,
GGML_V2_OP_CONV_1D_2S,
GGML_V2_OP_FLASH_ATTN,
GGML_V2_OP_FLASH_FF,
GGML_V2_OP_MAP_UNARY,
GGML_V2_OP_MAP_BINARY,
GGML_V2_OP_COUNT,
};
// ggml object
struct ggml_v2_object {
size_t offs;
size_t size;
struct ggml_v2_object * next;
char padding[8];
};
static const size_t GGML_V2_OBJECT_SIZE = sizeof(struct ggml_v2_object);
// n-dimensional tensor
struct ggml_v2_tensor {
enum ggml_v2_type type;
enum ggml_v2_backend backend;
int n_dims;
int64_t ne[GGML_V2_MAX_DIMS]; // number of elements
size_t nb[GGML_V2_MAX_DIMS]; // stride in bytes:
// nb[0] = sizeof(type)
// nb[1] = nb[0] * ne[0] + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_v2_op op;
bool is_param;
struct ggml_v2_tensor * grad;
struct ggml_v2_tensor * src0;
struct ggml_v2_tensor * src1;
struct ggml_v2_tensor * opt[GGML_V2_MAX_OPT];
// thread scheduling
int n_tasks;
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
void * data;
char name[32];
char padding[16];
};
// computation graph
struct ggml_v2_cgraph {
int n_nodes;
int n_leafs;
int n_threads;
size_t work_size;
struct ggml_v2_tensor * work;
struct ggml_v2_tensor * nodes[GGML_V2_MAX_NODES];
struct ggml_v2_tensor * grads[GGML_V2_MAX_NODES];
struct ggml_v2_tensor * leafs[GGML_V2_MAX_NODES];
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
// scratch buffer
struct ggml_v2_scratch {
size_t offs;
size_t size;
void * data;
};
struct ggml_v2_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// misc
GGML_V2_API void ggml_v2_time_init(void); // call this once at the beginning of the program
GGML_V2_API int64_t ggml_v2_time_ms(void);
GGML_V2_API int64_t ggml_v2_time_us(void);
GGML_V2_API int64_t ggml_v2_cycles(void);
GGML_V2_API int64_t ggml_v2_cycles_per_ms(void);
GGML_V2_API void ggml_v2_print_object (const struct ggml_v2_object * obj);
GGML_V2_API void ggml_v2_print_objects(const struct ggml_v2_context * ctx);
GGML_V2_API int64_t ggml_v2_nelements(const struct ggml_v2_tensor * tensor);
GGML_V2_API size_t ggml_v2_nbytes (const struct ggml_v2_tensor * tensor);
GGML_V2_API int ggml_v2_blck_size (enum ggml_v2_type type);
GGML_V2_API size_t ggml_v2_type_size (enum ggml_v2_type type); // size in bytes for all elements in a block
GGML_V2_API float ggml_v2_type_sizef(enum ggml_v2_type type); // ggml_v2_type_size()/ggml_v2_blck_size() as float
GGML_V2_API const char * ggml_v2_type_name(enum ggml_v2_type type);
GGML_V2_API size_t ggml_v2_element_size(const struct ggml_v2_tensor * tensor);
GGML_V2_API bool ggml_v2_is_quantized(enum ggml_v2_type type);
// TODO: temporary until model loading of ggml examples is refactored
GGML_V2_API enum ggml_v2_type ggml_v2_ftype_to_ggml_v2_type(enum ggml_v2_ftype ftype);
// main
GGML_V2_API struct ggml_v2_context * ggml_v2_init(struct ggml_v2_init_params params);
GGML_V2_API void ggml_v2_free(struct ggml_v2_context * ctx);
GGML_V2_API size_t ggml_v2_used_mem(const struct ggml_v2_context * ctx);
GGML_V2_API size_t ggml_v2_set_scratch(struct ggml_v2_context * ctx, struct ggml_v2_scratch scratch);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_tensor(
struct ggml_v2_context * ctx,
enum ggml_v2_type type,
int n_dims,
const int64_t *ne);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_tensor_1d(
struct ggml_v2_context * ctx,
enum ggml_v2_type type,
int64_t ne0);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_tensor_2d(
struct ggml_v2_context * ctx,
enum ggml_v2_type type,
int64_t ne0,
int64_t ne1);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_tensor_3d(
struct ggml_v2_context * ctx,
enum ggml_v2_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_tensor_4d(
struct ggml_v2_context * ctx,
enum ggml_v2_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_i32(struct ggml_v2_context * ctx, int32_t value);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_new_f32(struct ggml_v2_context * ctx, float value);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_dup_tensor (struct ggml_v2_context * ctx, const struct ggml_v2_tensor * src);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_view_tensor(struct ggml_v2_context * ctx, const struct ggml_v2_tensor * src);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_zero(struct ggml_v2_tensor * tensor);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_i32 (struct ggml_v2_tensor * tensor, int32_t value);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_f32 (struct ggml_v2_tensor * tensor, float value);
GGML_V2_API int32_t ggml_v2_get_i32_1d(const struct ggml_v2_tensor * tensor, int i);
GGML_V2_API void ggml_v2_set_i32_1d(const struct ggml_v2_tensor * tensor, int i, int32_t value);
GGML_V2_API float ggml_v2_get_f32_1d(const struct ggml_v2_tensor * tensor, int i);
GGML_V2_API void ggml_v2_set_f32_1d(const struct ggml_v2_tensor * tensor, int i, float value);
GGML_V2_API void * ggml_v2_get_data (const struct ggml_v2_tensor * tensor);
GGML_V2_API float * ggml_v2_get_data_f32(const struct ggml_v2_tensor * tensor);
GGML_V2_API const char * ggml_v2_get_name(const struct ggml_v2_tensor * tensor);
GGML_V2_API void ggml_v2_set_name(struct ggml_v2_tensor * tensor, const char * name);
//
// operations on tensors with backpropagation
//
GGML_V2_API struct ggml_v2_tensor * ggml_v2_dup(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_add(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_add_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_add1(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_acc(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_acc_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_sub(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_mul(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_div(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_sqr(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_sqrt(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_log(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_log_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// return scalar
GGML_V2_API struct ggml_v2_tensor * ggml_v2_sum(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
GGML_V2_API struct ggml_v2_tensor * ggml_v2_sum_rows(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// mean along rows
GGML_V2_API struct ggml_v2_tensor * ggml_v2_mean(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
GGML_V2_API struct ggml_v2_tensor * ggml_v2_repeat(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_abs(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_sgn(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_neg(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_step(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_relu(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// TODO: double-check this computation is correct
GGML_V2_API struct ggml_v2_tensor * ggml_v2_gelu(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_silu(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// a - x
// b - dy
GGML_V2_API struct ggml_v2_tensor * ggml_v2_silu_back(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
GGML_V2_API struct ggml_v2_tensor * ggml_v2_norm(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_rms_norm(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// a - x
// b - dy
GGML_V2_API struct ggml_v2_tensor * ggml_v2_rms_norm_back(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// result is m columns, p rows
GGML_V2_API struct ggml_v2_tensor * ggml_v2_mul_mat(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
//
// operations on tensors without backpropagation
//
GGML_V2_API struct ggml_v2_tensor * ggml_v2_scale(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
// in-place, returns view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_scale_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_1d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_1d_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_2d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t nb1,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_set_2d_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
size_t nb1,
size_t offset);
// a -> b, return view(b)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_cpy(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
// make contiguous
GGML_V2_API struct ggml_v2_tensor * ggml_v2_cont(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_V2_API struct ggml_v2_tensor * ggml_v2_reshape(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_V2_API struct ggml_v2_tensor * ggml_v2_reshape_1d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_reshape_2d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
int64_t ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_V2_API struct ggml_v2_tensor * ggml_v2_reshape_3d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_reshape_4d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// offset in bytes
GGML_V2_API struct ggml_v2_tensor * ggml_v2_view_1d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_view_2d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
int64_t ne1,
size_t nb1, // row stride in bytes
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_view_3d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_view_4d(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t nb3,
size_t offset);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_permute(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3);
// alias for ggml_v2_permute(ctx, a, 1, 0, 2, 3)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_transpose(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_get_rows(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_get_rows_back(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
struct ggml_v2_tensor * c);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_diag(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// set elements above the diagonal to -INF
GGML_V2_API struct ggml_v2_tensor * ggml_v2_diag_mask_inf(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_diag_mask_inf_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past);
// set elements above the diagonal to 0
GGML_V2_API struct ggml_v2_tensor * ggml_v2_diag_mask_zero(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_diag_mask_zero_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_soft_max(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// in-place, returns view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_soft_max_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a);
// rotary position embedding
// if mode & 1 == 1, skip n_past elements
// if mode & 2 == 1, GPT-NeoX style
// TODO: avoid creating a new tensor every time
GGML_V2_API struct ggml_v2_tensor * ggml_v2_rope(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past,
int n_dims,
int mode);
// in-place, returns view(a)
GGML_V2_API struct ggml_v2_tensor * ggml_v2_rope_inplace(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past,
int n_dims,
int mode);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
GGML_V2_API struct ggml_v2_tensor * ggml_v2_rope_back(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past,
int n_dims,
int mode);
// alibi position embedding
// in-place, returns view(a)
struct ggml_v2_tensor * ggml_v2_alibi(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
int n_past,
int n_head);
// padding = 1
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation
// not great ..
GGML_V2_API struct ggml_v2_tensor * ggml_v2_conv_1d_1s(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_conv_1d_2s(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_flash_attn(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * q,
struct ggml_v2_tensor * k,
struct ggml_v2_tensor * v,
bool masked);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_flash_ff(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b0,
struct ggml_v2_tensor * b1,
struct ggml_v2_tensor * c0,
struct ggml_v2_tensor * c1);
// Mapping operations
typedef void (*ggml_v2_unary_op_f32_t)(const int, float *, const float *);
typedef void (*ggml_v2_binary_op_f32_t)(const int, float *, const float *, const float *);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_map_unary_f32(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
ggml_v2_unary_op_f32_t fun);
GGML_V2_API struct ggml_v2_tensor * ggml_v2_map_binary_f32(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * a,
struct ggml_v2_tensor * b,
ggml_v2_binary_op_f32_t fun);
//
// automatic differentiation
//
GGML_V2_API void ggml_v2_set_param(
struct ggml_v2_context * ctx,
struct ggml_v2_tensor * tensor);
GGML_V2_API void ggml_v2_build_forward_expand(struct ggml_v2_cgraph * cgraph, struct ggml_v2_tensor * tensor);
GGML_V2_API struct ggml_v2_cgraph ggml_v2_build_forward (struct ggml_v2_tensor * tensor);
GGML_V2_API struct ggml_v2_cgraph ggml_v2_build_backward(struct ggml_v2_context * ctx, struct ggml_v2_cgraph * gf, bool keep);
GGML_V2_API void ggml_v2_graph_compute(struct ggml_v2_context * ctx, struct ggml_v2_cgraph * cgraph);
GGML_V2_API void ggml_v2_graph_reset (struct ggml_v2_cgraph * cgraph);
// print info and performance information for the graph
GGML_V2_API void ggml_v2_graph_print(const struct ggml_v2_cgraph * cgraph);
// dump the graph into a file using the dot format
GGML_V2_API void ggml_v2_graph_dump_dot(const struct ggml_v2_cgraph * gb, const struct ggml_v2_cgraph * gf, const char * filename);
//
// optimization
//
// optimization methods
enum ggml_v2_opt_type {
GGML_V2_OPT_ADAM,
GGML_V2_OPT_LBFGS,
};
// linesearch methods
enum ggml_v2_linesearch {
GGML_V2_LINESEARCH_DEFAULT = 1,
GGML_V2_LINESEARCH_BACKTRACKING_ARMIJO = 0,
GGML_V2_LINESEARCH_BACKTRACKING_WOLFE = 1,
GGML_V2_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};
// optimization return values
enum ggml_v2_opt_result {
GGML_V2_OPT_OK = 0,
GGML_V2_OPT_DID_NOT_CONVERGE,
GGML_V2_OPT_NO_CONTEXT,
GGML_V2_OPT_INVALID_WOLFE,
GGML_V2_OPT_FAIL,
GGML_V2_LINESEARCH_FAIL = -128,
GGML_V2_LINESEARCH_MINIMUM_STEP,
GGML_V2_LINESEARCH_MAXIMUM_STEP,
GGML_V2_LINESEARCH_MAXIMUM_ITERATIONS,
GGML_V2_LINESEARCH_INVALID_PARAMETERS,
};
// optimization parameters
//
// see ggml.c (ggml_v2_opt_default_params) for default values
//
struct ggml_v2_opt_params {
enum ggml_v2_opt_type type;
int n_threads;
// delta-based convergence test
//
// if past == 0 - disabled
// if past > 0:
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
//
int past;
float delta;
// maximum number of iterations without improvement
//
// if 0 - disabled
// if > 0:
// assume convergence if no cost improvement in this number of iterations
//
int max_no_improvement;
bool print_forward_graph;
bool print_backward_graph;
// ADAM parameters
struct {
int n_iter;
float alpha; // learning rate
float beta1;
float beta2;
float eps; // epsilon for numerical stability
float eps_f; // epsilon for convergence test
float eps_g; // epsilon for convergence test
} adam;
// LBFGS parameters
struct {
int m; // number of corrections to approximate the inv. Hessian
int n_iter;
int max_linesearch;
float eps; // convergence tolerance
float ftol; // line search tolerance
float wolfe;
float min_step;
float max_step;
enum ggml_v2_linesearch linesearch;
} lbfgs;
};
GGML_V2_API struct ggml_v2_opt_params ggml_v2_opt_default_params(enum ggml_v2_opt_type type);
// optimize the function defined by the tensor f
GGML_V2_API enum ggml_v2_opt_result ggml_v2_opt(
struct ggml_v2_context * ctx,
struct ggml_v2_opt_params params,
struct ggml_v2_tensor * f);
//
// quantization
//
GGML_V2_API size_t ggml_v2_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q4_0_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q4_1_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q4_2_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q4_3_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q5_0_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q5_1_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_q8_0_v2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_chunk(enum ggml_v2_type type, const float * src, void * dst, int start, int n, int64_t * hist);
GGML_V2_API size_t ggml_v2_quantize_chunk_v2(enum ggml_v2_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//
// system info
//
void SetQuantsUnshuffled(bool unshuffled);
bool GetQuantsUnshuffled();
GGML_V2_API int ggml_v2_cpu_has_avx (void);
GGML_V2_API int ggml_v2_cpu_has_avx2 (void);
GGML_V2_API int ggml_v2_cpu_has_avx512 (void);
GGML_V2_API int ggml_v2_cpu_has_avx512_vbmi(void);
GGML_V2_API int ggml_v2_cpu_has_avx512_vnni(void);
GGML_V2_API int ggml_v2_cpu_has_fma (void);
GGML_V2_API int ggml_v2_cpu_has_neon (void);
GGML_V2_API int ggml_v2_cpu_has_arm_fma (void);
GGML_V2_API int ggml_v2_cpu_has_f16c (void);
GGML_V2_API int ggml_v2_cpu_has_fp16_va (void);
GGML_V2_API int ggml_v2_cpu_has_wasm_simd (void);
GGML_V2_API int ggml_v2_cpu_has_blas (void);
GGML_V2_API int ggml_v2_cpu_has_cublas (void);
GGML_V2_API int ggml_v2_cpu_has_clblast (void);
GGML_V2_API int ggml_v2_cpu_has_gpublas (void);
GGML_V2_API int ggml_v2_cpu_has_sse3 (void);
GGML_V2_API int ggml_v2_cpu_has_vsx (void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_V2_RESTRICT
#else
#define GGML_V2_RESTRICT restrict
#endif
typedef void (*dequantize_row_q_t)(const void * GGML_V2_RESTRICT x, float * GGML_V2_RESTRICT y, int k);
typedef void (*quantize_row_q_t) (const float * GGML_V2_RESTRICT x, void * GGML_V2_RESTRICT y, int k);
typedef void (*vec_dot_q_t) (const int n, float * GGML_V2_RESTRICT s, const void * GGML_V2_RESTRICT x, const void * GGML_V2_RESTRICT y);
typedef struct {
dequantize_row_q_t dequantize_row_q;
quantize_row_q_t quantize_row_q;
quantize_row_q_t quantize_row_q_reference;
quantize_row_q_t quantize_row_q_dot;
vec_dot_q_t vec_dot_q;
enum ggml_v2_type vec_dot_type;
} quantize_fns_t2;
quantize_fns_t2 ggml_v2_internal_get_quantize_fn(size_t i);
#ifdef __cplusplus
}
#endif
|