File size: 1,627 Bytes
66ec950 d5465e6 66ec950 52a0611 6e7a74d 66ec950 b30ce1c 52a0611 b30ce1c d5465e6 52a0611 87fe461 d5465e6 52a0611 6e7a74d d5465e6 6e61d26 d5465e6 6e7a74d b30ce1c 2403575 d5465e6 b30ce1c 52a0611 13270de 6e61d26 6e7a74d e993855 d5465e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import streamlit as st
import albumentations as A
from utils import load_augmentations_config
from visuals import (
show_transform_control,
select_image,
show_credentials,
show_docstring,
)
# show title
st.title("Demo of Albumentations")
# select image
image = select_image(path_to_images="images")
placeholder_params = {
"image_width": image.shape[1],
"image_height": image.shape[0],
"image_half_width": int(image.shape[1] / 2),
"image_half_height": int(image.shape[0] / 2),
}
# load the config
augmentations = load_augmentations_config(
placeholder_params, "configs/augmentations.json"
)
# select a transformation
transform_name = st.sidebar.selectbox(
"Select a transformation:", sorted(list(augmentations.keys()))
)
# select the params values
param_values = show_transform_control(augmentations[transform_name])
# apply the transformation to the image
transform = getattr(A, transform_name)(**param_values)
data = A.ReplayCompose([transform])(image=image)
augmented_image = data["image"]
# TODO add convinient replay compose
# applied_params = data["replay"]["transforms"][0]['params']
# for k,v in applied_params.items():
# applied_params[k] = str(v)
# st.write(applied_params)
# st.write(data["replay"])
# show the images
width_original = 400
width_transformed = int(width_original / image.shape[1] * augmented_image.shape[1])
st.image(image, caption="Original image", width=width_original)
st.image(augmented_image, caption="Transformed image", width=width_transformed)
# print additional info
st.code(str(transform))
show_docstring(transform)
show_credentials()
|