Spaces:
Sleeping
Sleeping
File size: 8,194 Bytes
0f36bab c5323ec 0f36bab e204029 0f36bab 6760572 0f36bab e204029 c5323ec 0f36bab c5323ec 0f36bab c5323ec 0f36bab c5323ec 0f36bab bca6282 0f36bab bca6282 0f36bab ebdae4e 0f36bab 4b5d0b4 0f36bab 050312d 0f36bab 050312d 0f36bab 050312d 4b5d0b4 0f36bab e0ac9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import json
import os
import random
import string
import gradio as gr
import huggingface_hub
from datasets import load_dataset
from evaluate import load
from guidelines import guidelines
human2_annotation_file = "test.jsonl"
def clean_text(text: str) -> str:
# Remove punctuation
text = text.translate(str.maketrans("", "", string.punctuation))
# Remove newlines and multiple spaces
text = text.replace("\n", " ").strip()
text = " ".join(text.split()).strip()
# lowercase
text = text.lower()
return text
def html_progress_bar(completed_steps, total_steps):
percentage = (completed_steps / total_steps) * 100
return f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Progress Bar</title>
<style>
.progress-container {{
width: 100%;
background-color: #ffffff;
}}
.progress-bar {{
width: {percentage}%;
height: 30px;
background-color: #d1fae5;
text-align: center;
line-height: 30px;
color: white;
}}
</style>
</head>
<body>
<div class="progress-container">
<div class="progress-bar">{percentage:.0f}%</div>
</div>
</body>
</html>
"""
class AnnotationManager:
def __init__(self):
self.dataset = list(
load_dataset(
"Iker/NoticIA", token=os.environ.get("TOKEN") or True, split="test"
)
)
self.total = len(self.dataset)
self.predictions = []
self.references = []
print(f"Total examples: {self.total}")
try:
if os.path.exists(human2_annotation_file):
os.remove(human2_annotation_file)
huggingface_hub.hf_hub_download(
repo_id="Iker/NoticIA_Human_Validation",
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
filename="test.jsonl",
local_dir=os.getcwd(),
)
with open(human2_annotation_file, "r") as f:
annotations = f.readlines()
annotations = [json.loads(a) for a in annotations]
for a in annotations:
self.predictions.append(clean_text(a["summary2"]))
self.references.append([clean_text(a["summary"])])
self.dataset = self.dataset[len(annotations) :]
except Exception:
print("Unable to download annotations. Starting from the beginning.")
self.current = None
def get_next(self):
if len(self.dataset) == 0:
return "🎉 Anotación Finalizada 🎉", "🎉 Anotación Finalizada 🎉"
self.current = self.dataset.pop(0)
return self.current["web_headline"], self.current["web_text"]
def save_annotation(self, annotation):
if len(annotation) > 0:
example = {
"web_url": self.current["web_url"],
"web_headline": self.current["web_headline"],
"summary": self.current["summary"],
"summary2": annotation,
"web_text": self.current["web_text"],
"clean_web_text": self.current["clean_web_text"],
}
if not os.path.exists(human2_annotation_file):
os.makedirs(os.path.dirname(human2_annotation_file), exist_ok=True)
with open(human2_annotation_file, "w", encoding="utf8") as f:
print(json.dumps(example, ensure_ascii=False), file=f)
else:
with open(human2_annotation_file, "a", encoding="utf8") as f:
print(json.dumps(example, ensure_ascii=False), file=f)
self.predictions.append(clean_text(annotation))
self.references.append([clean_text(example["summary"])])
huggingface_hub.upload_file(
repo_id="Iker/NoticIA_Human_Validation",
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
path_in_repo="test.jsonl",
path_or_fileobj=human2_annotation_file,
)
next_headline, next_text = self.get_next()
return (
next_headline,
next_text,
self.get_rouge(),
self.progress(),
"",
)
if self.current is not None:
return (
self.current["web_headline"],
self.current["web_text"],
self.get_rouge(),
self.progress(),
"",
)
else:
return (
"Pulsa ▶️",
"Pulsa ▶️",
"Pulsa ▶️",
self.progress(),
"",
)
def get_rouge(self):
try:
experiment_id = "".join(
random.choice(string.ascii_uppercase + string.digits) for _ in range(6)
)
rouge = load("rouge", experiment_id=experiment_id)
return rouge.compute(
predictions=self.predictions,
references=self.references,
use_aggregator=True,
rouge_types=["rouge1"],
)["rouge1"]
except Exception:
return "N/A"
def progress(self):
# Return first number represents steps completed, and second value represents total steps
return html_progress_bar(self.total - len(self.dataset), self.total)
def gr_start(self):
self.__init__()
headline, text = self.get_next()
return headline, text, self.get_rouge(), self.progress(), ""
theme = gr.themes.Soft(
primary_hue="emerald",
secondary_hue="red",
text_size="sm",
spacing_size="sm",
font=[
gr.themes.GoogleFont("Poppins"),
gr.themes.GoogleFont("Poppins"),
gr.themes.GoogleFont("Poppins"),
gr.themes.GoogleFont("Poppins"),
],
).set(block_background_fill="*neutral_50", block_background_fill_dark="*neutral_950")
manager = AnnotationManager()
with gr.Blocks(
theme=theme, title="🖱️ Resumen de noticias Clickbait 🖱️", analytics_enabled=False,
) as demo:
with gr.Tab("Guidelines") as tab_guidelines:
gr.Markdown(guidelines)
with gr.Tab("Anotación") as tab_annotation:
gr_play = gr.Button("▶️ Empieza a anotar")
gr_progress = gr.HTML(value=manager.progress(), label="Progreso")
gr_rouge = gr.Textbox(
value="Pulsa ▶️",
label="Rouge-1",
info="Rouge Score actual entre las anotaciones y los resúmenes de referencia.",
lines=1,
interactive=False,
)
gr_headline = gr.Textbox(
value="Pulsa ▶️",
label="Titular",
info="El titular del artículo.",
lines=2,
interactive=False,
)
gr_body = gr.Textbox(
value="Pulsa ▶️",
label="Artículo",
info="El cuerpo del artículo/noticia.",
lines=10,
interactive=False,
)
gr_summary = gr.Textbox(
value="",
label="Resumen",
info="Escribe aquí el resumen del artículo. Recuerda leer las guidelines antes de empezar.",
lines=2,
interactive=True,
)
save = gr.Button(
"💾 Guardar",
)
save.click(
fn=manager.save_annotation,
inputs=[gr_summary],
outputs=[gr_headline, gr_body, gr_rouge, gr_progress, gr_summary],
concurrency_limit=None,
)
gr_play.click(
fn=manager.gr_start,
inputs=None,
outputs=[gr_headline, gr_body, gr_rouge, gr_progress, gr_summary],
concurrency_limit=None,
)
demo.queue(default_concurrency_limit=None)
demo.launch(auth=(os.environ.get("pass"), os.environ.get("pass")))
|