Spaces:
Sleeping
Sleeping
File size: 7,815 Bytes
fddf30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
OpenAlex4NodeXL <- function(keywords, pub_start_date, pub_end_date) {
keywords <- keywords
pub_start_date <- pub_start_date
pub_end_date <- pub_end_date
# create search engine function
search_engine <- function(keywords, pub_start_date, pub_end_date) {
# load software libraries
suppressPackageStartupMessages(library(openalexR))
suppressPackageStartupMessages(library(tidyverse))
# set options
options(openalexR.mailto = "youremail@email.com") # replace with your email address
# search engine
works_search <- oa_fetch(
entity = "works",
title.search = c(keywords),
cited_by_count = ">50",
from_publication_date = pub_start_date,
to_publication_date = pub_end_date,
options = list(sort = "cited_by_count:desc"),
verbose = FALSE
)
return(works_search)
}
# fetch data from openalex.org api
search_data <- search_engine(keywords, pub_start_date, pub_end_date)
# grab authors and group them according to collaboration
authors_collaboration_groups <- list()
for (i in 1:nrow(search_data)) {
authors_collaboration_groups[[i]] <- search_data$author[[i]][2]
}
all_authors <- c()
for (i in 1:length(authors_collaboration_groups)) {
all_authors <- c(all_authors, authors_collaboration_groups[[i]][[1]])
}
# grab author position
authors_position <- list()
for (i in 1:nrow(search_data)) {
authors_position[[i]] <- search_data$author[[i]][4]
}
all_authors_positions <- c() # grab all authors positions
for (i in 1:length(authors_position)) {
all_authors_positions <- c(all_authors_positions, authors_position[[i]][[1]])
}
# grab author affiliation
authors_affiliation <- list()
for (i in 1:nrow(search_data)) {
authors_affiliation[[i]] <- search_data$author[[i]][7]
}
all_authors_affiliation <- c() # grab all authors affiliations
for (i in 1:length(authors_affiliation)) {
all_authors_affiliation <- c(all_authors_affiliation, authors_affiliation[[i]][[1]])
}
# grab authors institution country code
authors_institution_country_code <- list()
for (i in 1:nrow(search_data)) {
authors_institution_country_code[[i]] <- search_data$author[[i]][9]
}
all_authors_institution_country_code <- c() # grab all authors institution country code
for (i in 1:length(authors_institution_country_code)) {
all_authors_institution_country_code <- c(all_authors_institution_country_code, authors_institution_country_code[[i]][[1]])
}
# grab author institution type
authors_institution_type <- list()
for (i in 1:nrow(search_data)) {
authors_institution_type[[i]] <- search_data$author[[i]][10]
}
all_authors_institution_type <- c() # grab all authors institution type
for (i in 1:length(authors_institution_type)) {
all_authors_institution_type <- c(all_authors_institution_type, authors_institution_type[[i]][[1]])
}
# get length of each authors collaboration
authors_length <- c()
for (authors in 1:length(authors_collaboration_groups)) {
authors_length <- c(authors_length, authors_collaboration_groups[[authors]] |> nrow())
}
# create authors data frame
authorAtt_df <- data.frame(
Authors = all_authors,
Position = all_authors_positions,
Affiliation = all_authors_affiliation,
Institution = all_authors_institution_type
)
# I did not want to have to use underscore to separate
# the two words (Institution_Country). That is why I
# created that column in the data frame using back ticks
# instead as shown below
authorAtt_df$`Institution Country` <- all_authors_institution_country_code
# publication attributes
# grab all publications
publications <- list()
for (i in 1:nrow(search_data)) {
publications[[i]] <- rep(search_data$display_name[i], each = authors_length[i])
}
all_publications <- c()
for (i in 1:length(publications)) {
all_publications <- c(all_publications, publications[[i]])
}
# grab all so
pub_so <- list()
for (i in 1:nrow(search_data)) {
pub_so[[i]] <- rep(search_data$so[i], each = authors_length[i])
}
all_so <- c()
for (i in 1:length(pub_so)) {
all_so <- c(all_so, pub_so[[i]])
}
# grab all host organization
hostOrg <- list()
for (i in 1:nrow(search_data)) {
hostOrg[[i]] <- rep(search_data$host_organization[i], each = authors_length[i])
}
all_hostOrg <- c()
for (i in 1:length(hostOrg)) {
all_hostOrg <- c(all_hostOrg, hostOrg[[i]])
}
# grab all cited by count
citedby_count <- list()
for (i in 1:nrow(search_data)) {
citedby_count[[i]] <- rep(search_data$cited_by_count[i], each = authors_length[i])
}
all_citedby_count <- c()
for (i in 1:length(citedby_count)) {
all_citedby_count <- c(all_citedby_count, citedby_count[[i]])
}
# grab all publication year
pub_year <- list()
for (i in 1:nrow(search_data)) {
pub_year[[i]] <- rep(search_data$publication_year[i], each = authors_length[i])
}
all_pub_year <- c()
for (i in 1:length(citedby_count)) {
all_pub_year <- c(all_pub_year, pub_year[[i]])
}
# grab all type
type <- list()
for (i in 1:nrow(search_data)) {
type[[i]] <- rep(search_data$type[i], each = authors_length[i])
}
all_type <- c()
for (i in 1:length(type)) {
all_type <- c(all_type, type[[i]])
}
# grab all abstract
abstract <- list()
for (i in 1:nrow(search_data)) {
abstract[[i]] <- rep(search_data$ab[i], each = authors_length[i])
}
all_abstracts <- c()
for (i in 1:length(abstract)) {
all_abstracts <- c(all_abstracts, abstract[[i]])
}
# grab all referenced works
referenced <- list()
for (i in 1:nrow(search_data)) {
referenced[[i]] <- rep(search_data$referenced_works[i], each = authors_length[i])
}
all_referenced <- c()
for (i in 1:length(referenced)) {
all_referenced <- c(all_referenced, referenced[[i]])
}
# update the authors data frame
{
authorAtt_df$Publication <- all_publications
authorAtt_df$`Abstract` <- all_abstracts
authorAtt_df$`Publication Type` <- all_type
authorAtt_df$`Publication Year` <- all_pub_year
authorAtt_df$`Cited By Count` <- all_citedby_count
authorAtt_df$`Referenced Works` <- all_referenced
authorAtt_df$`Host Organization` <- all_hostOrg
authorAtt_df$SO <- all_so
}
# filter out missing values from the data frame
authorAtt_df <- authorAtt_df |>
na.omit()
# move abstract column to behind Publication
authorAtt_df <- authorAtt_df |>
relocate(Abstract, .after = Publication)
# rearrange columns for NodeXL flat file csv format
authorAtt_df <- authorAtt_df |>
relocate(Publication, .after = Authors)
# rename columns
colnames(authorAtt_df)[c(1:13)] <- c(
"Vertex1",
"Vertex2",
"Vertex1 Position",
"Vertex1 Affiliation",
"Vertex1 Institution",
"Vertex1 Institution Country",
"Vertex2 Abstract",
"Vertex2 Type",
"Vertex2 Publication Year",
"Vertex2 Cited By Count",
"Vertex2 Referenced Works",
"Vertex2 Host Organization",
"Vertex2 SO"
)
list2vec <- function(x){
paste(x,collapse = " ")
}
# convert list column into character column
authorAtt_df$`Vertex2 Referenced Works` <- sapply(authorAtt_df$`Vertex2 Referenced Works`,list2vec)
return(authorAtt_df)
}
# test software program
# mydata <- OpenAlex4NodeXL(
# keywords = c("software", "information"),
# pub_start_date = "2019-01-01",
# pub_end_date = "2023-09-30"
# )
#
# view returned data
# mydata |> view()
|