File size: 56,878 Bytes
9340724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:06:15.533290Z",
     "start_time": "2018-07-21T07:06:15.509560Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The autoreload extension is already loaded. To reload it, use:\n",
      "  %reload_ext autoreload\n"
     ]
    }
   ],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "\n",
    "from src import detect_faces, show_bboxes\n",
    "from PIL import Image\n",
    "import cv2\n",
    "import numpy as np\n",
    "from src.align_trans import get_reference_facial_points, warp_and_crop_face\n",
    "import mxnet as mx\n",
    "import io\n",
    "from pathlib import Path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:08:15.237357Z",
     "start_time": "2018-07-21T07:08:15.214563Z"
    }
   },
   "outputs": [],
   "source": [
    "face_folder = Path('/home/f/learning/Dataset/faces_vgg_112x112')\n",
    "bin_path = face_folder/'train.rec'\n",
    "idx_path = face_folder/'train.idx'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:08:20.176501Z",
     "start_time": "2018-07-21T07:08:17.337626Z"
    }
   },
   "outputs": [],
   "source": [
    "imgrec = mx.recordio.MXIndexedRecordIO(str(idx_path), str(bin_path), 'r')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:10:25.708722Z",
     "start_time": "2018-07-21T07:10:25.687476Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "HEADER(flag=0, label=2.0, id=813, id2=0)\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAABwCAIAAABJgmMcAABQ2UlEQVR4nGX9Z5NkSZYlBl6m+t4z5ixoZtGuLirdgAyAnVngv+MDdoEVwYpMTwPTmOmqnqpKHpERGeHEyHuqegk+qLln9MA+uAQxdzdTU73k3HOO4m92u6AorRoCCQLTuBqzJNeaWNA8zDNyYgYAAgThMh/BY5Q0sIgQABRTRwjCEBqGgZnBkQFzzuimqurmEY7AgMKckSeRBMQEZu3hsC9a8jgAInkehgGZJCUZxMLfvn+nZhEhIhAREYLiamAuIiDjaVmMWQmd0InVjYjClSIgDAAQAwgNwiESACLDv3oQALh7RPSvEfH0f4gYEYjYn9P/xd37MxHRzMZxbK0NwxARYmAACIgpEWYBgohorSTmUAtzDkcCV4cICKCQi2kaJYV5NCUPImIWSmIEFgHm7EAACIS1UsQgnJhKawAgIhwQtQ45Z+JwhYCVCEFkkTyNqCQiJOwAYZqFn11e1FpbayklIkrEQsnMCHCapuZwd9ifaisRFUDBw1UtEBEiEAIAHADdHcIhmgVRIGJfI0QkQiJ6WrhPl7X/GRHp8XH+BIhqrcwcEUTUn6mqZiYOAeBBEQiECAj9V2FAuAriSCkTEmIiZqT1atqtV6s8WG1aKrhZuEFUr4GoDrU16b/bFWsEISi6O4WP47hZjZnYS8tE6yExZBEKviy1BuE4ZsG0LEsQElFtTd3Wq01LLSL63o8IIWLmMQ+r1erkfrlffdjvPzwcojVGimBVhfNGi77NIhAACQBA+wbsXxERwPsaPS3o0xr540NVn5aSmfsTiMjdRaT/OxGpqqg3AALCILQwCKQgFta5oFsmYiYJ2uRxt12vhnGdebNaT5IFghDdzd2BsJlV1+Myz/Ps7oKEARhQwoEQER0hAHL4Jo/rzXY1DKs8JMacc0psEMiAzHWux+OxtWYQTWQpZVyN7iMiXl5ejuOoWt2dmYUYAFYcq+EyCdR2qk0r0CAYDoEQThAY6J+eX+LzeY8fH/bpMcfHx9Oi961nZn2Jn57GzGbWvz59ixg4IZIwCQGhu9da0YjDOCAFJoCVyM1m9fLqZruedoOs1+uBJUzJIyKIgIQNwsEtPCLCQVsr86KqKKm5AeIwDGkcMktOaZA0cBqYhpRyTkSEgkBYSjFrrV3u9/v7+3sl9jFfXFwSkUP0Be3Hvy+Iuh2ijCkRrGrbtVYe5lqAEqMDOYC5QxAA+CfL+una9T+4u5k9rebT6e5P6AEhpfS0W/uGba2pKiKqqoj0JZY8DH3VIwICIsJUSUGYB6Z1Hq7X6+eb7Yvrq5vtdhzyduTtapVEbKkIPqacBwEiC7dQd++vxjXcHQOquSMwMzIhMCIK48CSWDJxZhIRAKckgX7wpkRpNdxMed5uaq3LUpmSDHmappQSCbeIJVTVACESQmALkPUKIszM3/8AxYGwmkVAxL9auOhvEqCf7sdt6BHxlJqewuin39VPuohEBDP3XPQUIp6yFhFJSqm1pu5uDoQIgQFZJDGNKe/Wq+dXl59dXV5vt9thGFK+2qUxZyG2BGCeE4uwmQ1CANkBmDkxm5mrIaLwYGYOgYiURJAAgCymMRMguEc0IhIwZE6rySGrqoWMCAvhCEgku90ugAAAwpkACQp4cw31gQHD3P1iyM+36+NxNj2VUlvV6hgAKMzECBxh9JjT+1rFOWP14NhXGSIcACPoKcg+hYb+1x40eyhIKT0tqKpGhLi6ewBiuPVwJ4g5pfUw7PKwXa13q2k9jqPwKLyZMoGFKQuO42DaAIDAAN2sEREjUjiEJ4QQwIjQRQiZWYQ9wLUhYk5pYMwphRqCi4iDRVhOpAANHJkBhkUSbzZmkceRiCy8qnrplQOys2qEmzuQaTLYSr7ZbJZqD6dS5kWD+nbqZ5Yet9vT3uxr+l8Fzcf/Oi+0GTwlqKc/mNkwDKqacwYAZu7ZEgDEVZko3DJLEFLAahqnlNZ5WI/Ds8uLm6vLy836YhgHJkYgDASr1Q2RERhR1SICwAmFkDAcmqs7EbEIQQCEkBChu0PCxNyfR6CBbmZhjgDhDgyIwAQU6O7rIRMRBIlkCwdKzGRePdgiXB09WEEcRmCH2A7TzRYPs97lsp3iw+G01MqmrUlKIgQpMaI8ZaSnoPlpYP2vQi2zmFkPqWZWa621juPYE2Nr7dOfQ0QSBuCBSFkGySzEq5wHgTGn9WrcbdcX2812PU1JBEIAwR2ZGSPMFD0AiUCIATgn6UVvuBMC92Kr1zjMzIwoPV4TwuNJ8gg3CApABEYOAjAHRGbE6PWbuysLGzhir2msv8nVarXMSqQAqO5KMYmsclrldKxKgKq6tIpEQ05DYvchCUUE4Lm6BDhHzE+z0NNWjYierD7NYz2e9jNeSmHmXs/1qCoIjBhJJOecs2ThKaccNg15O43bzWo1DrmXAO5mStGQEIiQAh0CwtWVghDCmJFcDXoUBxTElHNKqb/Q/joAkAh7DgGEXlrE+e15b2MeNw6Ch3s4WphrOCCMqwETPhwPdVmqFvKMgRQgBBlpnYbtarXbtPcPp3MENAyA1hTMXQ3Xjz+f/PEXwVPF/vT4NCb0iNHXq3/taerTcrWU0kt9ISISTomFgCCS0JglA1+sx+1mXE85JyQOxEAMoCDDiAB3AEciDA8AN3MIBnSi6IkSICyA4CnvAwDnxMznsOUeAI5IQWDnstkAQ8MdEP2x2wsPZ2BOGc0DIUtGpqKttubNHc/FNgdwOBMMTFOSIUtOiZpGFAhwQyAEoGVZer5mwh6pALCX6PD/eCAi83nhehJ/WutaK37yeIqw0qvuHiBSkjGnaUwDxmY9bFbDOLBQIDhSEAYgJWBCdNfHDwoIkZnPFX4P+UDhYGCISINwTsMwEFHOQ28neqPGiOjGgOHJ3dGt17AR8Gm9HRGOodUjAJjAmvuPhTQgAgYLsRtFMPogvFlN05CZT4zkgBjoAaoOHhZVhIdhyJAlIQBFuJkhPsVQ+q/W9OnPIpJz7vVmrVVEnsqppycLCgeGhqaglHic8iA8SYyDJAEMNXd1aEYGDh6AICTIFO6O3ncbEBCQR0CEsBCzuweCQzTT0ioSCzORMrP3mMWciNz96T2pKpqDeyBFhDk81YwQptqQkzCnlBLlIGyqqmoB7mAR/WMkjCHLJnAcx0Tcv51Q3N0B1AEZVC1icfcBUkqJmQAgwnrQ/H8kqPh08/ayqR/5vr7MDABPUVjOIQuAc5pWgwgHNObMjABh1hzJAowJwiNCgbD3s8xIPXKDQwABBrqHQQAEMgVAEIZDLQ0CRSQAhmFCZEQkYUR0NXdFRAKEZo59gxCAAQA9AkPeG+cwrRARLAkAmIiJLALCAR3QA9xVzTwiri52b+728HDU5sEKEYIJkRGjdzsREWARkbOISD8WANCDwNPe7Mf5Mf64mYlIa+1p9Xu46Emfmc+LzcLjmMcx998njOCqLbRSC2aiIEYERkyciMggEFxIqH++7hhBiIGP8Ez/3CLArIcbIorAp1fQD0uLACdE8HN956QB5v3DI0IijAgP7QGNzmBY09Z6B91qNW/gARBEgD1AQQzDkFISEWEmllZqCzVQNGXm/mN70ROR3J35Xy3ip4nx8cX/WGkBwDAMZtZa601n37/uLhjACBPLBAzHYhTjIGyYOLvZqbWcGCU5oSNAgCE5ICMkJgpgs15vIpCqEmFQEDEAaGvMxMMoIiLS+2DqjTUGhhPQkKS6lVLQg5M0U4cIDkQmYHdXD0M0JyYBAEMkhAg3cABD9AmSOlZTC2ekTCiwiJYLltebfLjDdLk+tbDVpmjUZhFGERRAZuRG3prZeoqUzqHQ3SMMBJk5AIgCyQMcEUJtGBLAGQxtrQlnRjEzDCLg8JDr68t5nlU1IosI47mvr7Uyd5QQVZWYmJjwv+qLIR5hV6bzvzOzsCAiIT6Gp/PRePrkRYSZ+z4VES21mZ4/dqitdQTrnC4FCAWb6vkA8rnt4TOKgcxM4RFA/bcLpZQa4NXVxe7+oKeKGRtIBp6XqlrDFcDB7YxhEKr2AyEpCRFoOICH9/PvEQGBEeEI6RGyE5FHkKlXK9ETtSCiEAKipP7ygJnOcVdYOAOARohDMDg+wTDxiJ2el7hjXD0VJpZ+XiIiJel5MKWUUoJHrOGc6Puqfdr8ATJSECBiVdXWgACYMMAhzAwNA0FVa63Wmgd5GIAjIkIQQ2YZEizNVtO0Xa/vFmUQTlNpkRKM4+jW3BW8qjaIFhFz0UGE0AkRhQnPEImBCiDAGVIBIGCy1s5dH0DPsYFAzOCBiOJh45gJEQCaViAMQTULT+eTayGBQQhBfbf2tO6PRUVfCEJ+ggl6eO5oaQ/qPZY/bVUWcbMf61NmIjKzZVlcNSKIGREZ0YgcHD0AIMzP2ybQPSAQApvZUzKJgDAnDGEkjYz48vnzd/enj7cPPODiIHkicCKCEIbBvIQZAqhWIG5GvjSRSCmRIFCAgWojoiechJkXiJySanU3APIzhkkWhoiSCIkITFtTDuHMEdzx1NbaDBBEaRwAyAAAwAK4VzJOZwAoAgDMrS9lPw7MjCKIgMQ9CdZan85779s6Vm5mPee21sq8oHlEkDsyEVHOWV1rrbWjvI8VjLubati522HmcANXcAtXRswExeFit7q5unyYWyOWHkICiNg1DJ0wozgREab+U00jHDw8AZ/7T5IACggM78H7jDQjAFMQajPssJU7IopaJUMIG5iFkM8VA5GwG1RvnFI4eqAbwGOgROy/L6w3wxHhkFJi5sQSEW6Wc05JiNgeazQA6B9VrdXd6bHHsNpU1dX6N0ZEM40aABCI6lZr1TgPxhARgMzcrPdUCAAdHjw3uIACkRDIm5uPmcYxL0tjmUprjJFzdgAIQkR3BEMPfgxl7hHe3MyREQByogCKMEAOdPUAZAgC8KcOCogcIJA9QhiBEASlv3t3s9o0J+YU5+meG0TzCPfE6BjI6BEdVQALcHOL3rB/+ngaszz1Emfs+fHRARJ6bJYRcRgGGUYL71GiqkYEI+ScrRYiIkSiMwTTpwNzc3eHnh8gGI0ACIIRhJHMB5FpTPuqwZg5leNpGIbAXtwyBAR2bAERETAALBDNDcEBYNEgogDr8I6bMSdksarMZN6RHo5+zs1lyCki+g5EOn/gYW5mCGFuwmwWihqAPcsTCRESBkYAnsN1r5bdPbH0ngwf54h955jZU4WMiPIYN9FDRAiwQkGCCNCmvbHpkw9y0PCcs0cgcv9Hbw2MAGLIubUGgWZGxL0ACHcOB62rvH714nr78uX7Q3vzw91+rtFazkm1qTZEdDMiJiKkDmg6khAFovSs7eFufZDp5qTWmNG8EBAKuzvEIwgMGADCGCmnME9ARIDmvaNSVYBIhKp6PJ1oWq2HDITqjmbgQBiMQYDIIhhPCKu6uTs9blgRflpEM1PEnPPThAwRAbzWEo9xFh36xsSO3gF0+MO8DypC3QCASNy11hqAECiSRQDroiSEit6yUGJcyvH2sFx89vObNJaIz7cXf/7jl6q62WwOD/v7+/vr62sKXJYlJe6Z013DnAeu5ikxgUQEAkO4mYWjhpshgJemzJxSsoCckqois4R5kCdCQUSPLLyaJhEJc8ewAIMwOh98ifDeKjICBAIwE0ZnQPQFPDe27h7hANTP/lOK71huz+wRwQAgQkSt1nMfjciPg0mHeJqL9QVFJn7Mcj23AnJEIHIgECkiE2JiKXURhN12c1cbhP3xn/94N9df/Ob345h/97v/5uuvv/5W62r9slVTVRmyqxIRMDS1lKRHKrNAoKdTGNExN0MARCbA1pp7B561n0tJhIPwZr2eJLsZQ6zHSfBxehM/8il6Qu8bBAOYAIkdnbF3PwAA+DghaKrM1Kv3p1oq5xz/am8+oraP/Zy7Mwk+jsks/Ckcd/IIQ4dN4fyxMltzh2BmDAAgdw9HAEgiuKiVJTMxmmu9urrQulxcXPyv/9v/5+/+7u9+8YufTdOU0vDll1++f/dh2G5Op1OP9RGuTXsz2ptU7LOE/oKDws3BUCRQkAWBqlrVCgAyDkPOmZGYKBP3Cc+YJNwSAoKjKfb2OELDJcLQERA8sEMiFASP7RMhGTRoiMjU89J5uz0hsn2Je31H0dEgJKI+p0UPAtD+NHdg6n89T9RcUTsgG+BmpoBJeuAEIqIkg0dEc8UYhqGaD5L2h+Plbnv5+idfvXnzhz/8D3e3H6ZhxID/8B/+wx/+8Idf/epXt7e3v//971pr9/f3Hz58eHh4mKap1kVE/LGm78VNBAVEYBCJublDNGUiZmmtmpmAR2IJtRp1M0zCzIBMlESEMVy9BgI+NrBmHZ8KAgyHsACMcISwnnDcer5srTejKZ0Broh4KjnP0L25f7I33Z0B1Q0RhYgAGgAEWHio9SPn1skY52GkqwEEU0KyZuchNiK6Q2vNzZk4Qpno5voaCL3p++/fvXjxoqMhL18+j7Db2w8PD3en+TDkabPZ5Jyfv7j5+uuvH8+lwydLCo8bxzSIKefcWtE+JkEYplEEaUzZzdA7xscQoKrjNIkQGjRWip7H1d0lkCKQAQmQoPcu2Fv3T8JoDw5kJGgdi+4A19ORZ2Z3BYBOAeukAUYU+rHjEiIAICACTHD+IRp9zs9C5yjGEoDgoRH+dA4SJhUjj9U0vXn7wz/86S83r3/+56++ef/DqT/nJz/57Pe///3bt2+J4vXr15vN6vb2/v3797/5zW8eHh4QMeXRQxH9x5N+bskI8VyE9pct8iO9STabjTCrWniEeacAxXlIfR7Adhy+J4diPdsAASEAIsQnkNdjvfxjb25m6N5hrnEcH9fUWzOw88tCACIaJDFzVFNV7/AdIDIlosi5V10Okc7gIyGmLNK8ErEHAzN1tAqhmUarS6tJeHk4XF/ePL/ef/f27c3V9WFuzIiIX3311ZdffklEn3/++bNn1wBweXn58PCw3W7/4z/9k0f0OgxAAQKAAiyiY6AIQK3VNA7hIUMG8NPxMI5jGpPklPpJGcdpyAO49mbD3cO8DyMAPSI8QrUKUz8LjsC9v0WkM5QQeAYN8cf1fZx0x+OEC/v0DaD3oPZYJFHP+8znvwZpPM7RAKxPHKNnPjAzZiACjOg/273zj34k1TBgay3n/LA0dxdKD/eHaXtTypxzPhwO0zTVtvzLv/wLAGw2u5SSO/zxT38ahmFZlsfj7YjU2Q8/5l7ENE4RNs/z8xc3z55d395+VNWH/Z24uyAFUYDVdkKPnARJwmsAEmHOCQAcaQktfbjIjCICIgESLN4jmjmCgwJQr10kiB2NKRAIKSJqrRSBwh36DUJzJ4CcBgLojXnRYn3QicjEiBgYwORe+tTTEYKRUIiIUICnpgWpDNJqW2q1qtQ8OSZ1EwzBxtZGTplxoahxalATkuQBMbkCAAjS/vaYMhPRw8PdI0YOZg0gEB2REahvVABgYggDtPVKklSR080zPB5Pz19uhYiY+qaACIA4Y+nMHWGzcBMkRw1zDABz8D5GD0QC8AiMsJ4q4mljAhgEhiNKZ3ecy0YAq9bpqT1ZoQc4PBF6e67ve5mIkDvDQN06/tIjxnnchIjmEQjgaAERwMwJRCPmeWFmUBWkaZqGlCPakHIFFGDTFB6tAAQDALAwBxAHBQZ39uNjxISIc9GNPwa3QMQAWJbTVMldA+L6+jrApLfSfS/jY3HTAQh3DzdyV1R2wug9MhMiPY78e81rHakkwiCHcDzX5ErA7szcSb8RYZ8c/6dAGxEWIUSEhEwZAZnMDII01MyaaevwrYCIqBqeG4+iJNz5f27MiQPUyKx4qLUKCCJCTQmYkdEQbSTMrhARas6cAQMAkROAd4omAHUCGQJjR0CCAOkxLwAiABoTrlbj5eVuHIe7+31tlnMSd3XH3tAwEQMBgGlYlFGYCM4DXvYkwmkYMDIS97EaOCI5WHhHOiMQHcDCJSg6KtBxT2TEQMRE3MHjvg37J1e9YWuJWYiNAoFIBEjc/THHOgYRnWEUBuxv0dyQEUiQEM2RDMgNznMtRMyMwIygWYSRwuLMUAHoU7BAAAQLB7RHHLlH5fM0CcIh4rxJP5kdpczzckS0u7u7gLrdrdUKYkife3WcUYQRwMy9KRMYgnQsBWlMacyCiBlAiMA7QYWcIMD1vDTnLAQAgIEEQCgszEwYjGmQ1Olq7ra0euZiBHYsJjFnSTwmooBAi/MUIhAROOeOVBmYRwQjpcREpIzmDs3dwB16jUaEALFeDw3cNTbTarNSin1iLqBnpM6dGCKMEDzUoW8Jfxy7BgQBYG+WH99Wn/J6hEVwKeV3v/+b3cU0z4eHh4/3Dx/v74/SA1mnrPv5vAKYDeMgZ9w8Bk7rIQtjRIw9JJzxVEDqaR0MguO8oGEe/UUHJKGUmJkTcQdMe9kEAMWLmnq4qYVZcw9zDGVmQg4ERHYAd2+t5UGIyEwhgjp3HQCxNws1zC3AAsxCVZsbknVYLBEkoHHMWdJcLaUAQA0HDCQM92AKBwjv7wIRKBCBzgxy6DXDmTPSO+FedT5//nwcVvd3D9vdqLZar9fPni3SB/z4OCk1MyZKzOeMgTByGgVz4kSEAZnpnEnAAaGT2RAR3VEI+9C9R2wPR6+1CpJIypKE5Vx0MFlKfSzj3uf6EBGllGW/5JwlDyLCKcNjt9rjg5baW/iqtWoDgApnYmYP+g5h4R46jtmioWAGIoOUKWWi0pgwELA1ZDG3oF7ZPVEbGAA6qBPR62+gR8JEf0ZPxa3VCEDkq6sbQIWQq6vrWpczrMLIRMSAGsGAImKthSByToSJJSMNwiICpuhhj/TJxxANRCQoQsRIDEhA6IAY3lRZzYwG6jyWftJzHgBQJLm7iZqZ1tpaw4D+qZiZRWVm6wHRI9RKKR27OpWlc5KUpI/X3aFpIGJK3IDHVXaUxRo45ElyFiSbVqm2yijFIWU2B0J29/MgrsfHiJ6jMboS6Ecqzqd5nykxwzdfv0Hyq+utanz/9mPOWVS1Nbu6uCQiLUsSQQBwY8LEMiUZMo9JBDHMPSqcyS2IiICojzOyiHAzcGFiAowIJEwsRuFu7ue1eELvtRrnxJAAINRaa1UYmQtia7r4QpIt1Myij6EeQ1jRVsMCsJmCQUUzMzcw86WpAoZQHlMINnMgrLUaIKX42S8/e/fx+PbP3758eS2pnUpJkhwpZz6eTogI6H16Gh7MYKZIHQc6x1HoBKiIgHAPcD4djjnLx798u9mu9vv7Z8+eiVmIcCnF3RPhKAnChWg95dUwrBKn3ga5AZ1PREQYAPnjZBXOScg0DJshEQh4NG/u7gjG3ty93ffuc7u9kJyZUydNm5m6AwplZkowzy3Aq6J5s3iEJ+Aphlo4BVWwU2utteZBJBBoFsXcGcOjlhbVHVTDa2Babw/Lh3cfbteXzz77/NVqvbkgOS01gIP466+/3u12t7e36810PO77ZL/W0k9qc4NPHh2UQaCcUtMqPNaiwtMyG+F0PFTprEZVBXNZjUQY6kPK0zBOWbIwh1I8VrMevR0EAH8EQXraJaKwKABEBo5E4MCp8xQIm9vheHL3nPOxqOSEnDog3x4hKOqUq6DqoQam2loLMER0balySqnzbABQAw61nuaiEUyJiAJJPdSjFC1tCQpOVE0bsNBptV2t5vlPX/zzaaa0H0jyOE7TarfdrL7GdjzcSQIRFOFPscTmhv+ajBefCBXCIYCYU2st5zHQtIU09awxJMopp5QggjHGLExIGGEaGEQgJNjZd58ArggAQX6mx4QjgsVcWmUVkYEYEANBI8BgcVfVk/q+GQByEg/U8KbaF3oYBiaKubbmBtFaOS0zuCdmd01GQwQgGiBaFMCHUvfz0hTMTiJZ8uAQs9ZjWZa6mLVAkCFjylbs4JHGdP3s4lfXL/I07h9O33339n5/ePv9l0x2cXV9e3s/zzVJQqRaC5EgnAHyT6NnP5SI4N5nC6KqScZwSJLcVRDZAgA5pUQBGJ4l9bETAQACBiB2zAkMgojC8RErpHOZiGSqCGAQTRsHZxG3VsK0RURo8+V0cgsNEJEAOpUFkEnYEcKRqDLPAJDdm1tE1Losy4kBc2KOyImDBYksoLnPGh8PZX88FafWGsAiIi18Lsv98bAsJxnyMAyxn4HloZRY5evXr9JAMvo//If/369//dvNll+++klK+asvvwOgIW8/3h1qWUQGZoboIiyGT9LvI7LjABQROefWWp/jPi49ieSxE0taa0gw5bQaE2EQBiP0UsndNaznX9O+F/GprTbvhe5Z5oREQeiuVkNVj8vSgatlqaquqsQJOVl4VXOIAHJ3YOr0iAzQORZNK5hOScYhZUKHRE1JpEGo0sNSb4+n+4fT+8P8qHILDbfQqm2plYiGlFbTJq+lWqD5YT7NtaT5dPP8WR6Gm+f5iy//i1nc3Ny8fPHZ/f1+msavv/qutSK8giBE1hbEZ/VIR0ke17aP1vKyLKvVqstBalVmlpQSY5iZdyYyBp0Fqr2WiD4hNTCCzlT+cc7jEGEBAOGPLFHAwKha69zmMhdtD/tTL6pU3TWW0jTcPJbSqrkhiHTM+gy/roeMiK0Va5oFxyHtdNyMqc/4BaA6ztruD8cfbvd3h4d3R1XV1lqttWlBIhkyM7949vxqd/Xs2Ys37954VWv2xT//5zQNF5cvnt189ubN+4uLi9cvP1PVh4eHb77+YprWTJ4H8dlba4QkLCmR+ZmrD51X9kh0JiLVOk2Duw/DUEpZr9dmIYgIgYDQJ6IAHuEp53NYNEcMISZiAiSidKZLkENAdCmvQILWWpgFoUXMy+nDw93heNTwpk5EiTMAISEwWbWltMXstCzNHIn0UbnGzHeIKSUIM2uj8FoThg9p6wgabs2Wpodmd4fj7f3Dx4f7D/M5pyFiAA55uHr27Orq6mJ7OaTh9uOdG4pkGfBXv/rV+9sPd/fl/uOteVvm9tOffJ7SsN1uu+7o/bs3rbWcJ1QiTKYeXVSBGGeZ+I+DxS6N7tPcUs7aXjMTw46tmKIoBiMwM6GEVYhgIiHicDAARsQwQkQKDfBgJvBw166BoZyU6OPdx4+Hw2HRElyKIuTn18+JJCLGaTUFlqWN2tzhuzdv9h8+dN229So9sNYqEiKS0wREAclDSouqIIk8oDqVZsclPj6Uw0Je0RxAIJhmrVVZ5jjNd8dN2W6m4+EDJqqh2KaLdPPTV88+PhzX6/X1zeX333/37fffPezvVtNms7n4cPfhtCDSypxT4tZm6OM4Sp0S3SWHiNzhZ226Xq93l5ettap3rz57SUS3t7diZkjQ9yN+InogInxMcME/CsYRmAL6cBIRg6A1K/NczI/LPJsdllLUaqvAPI7TOOzOhcUwusP+eKhVT3M5nU6Hw6Fvrkf6lTOzMHf63Ho1Xmw2q8xj5rXQdrNipGa+niYexu/v7k/HvRvmNI2SqlvxKsQQ9nB7F60+fKDVmHKmabcaNqv11U2X1u12Fyh8dXPz4e6Hm5ur6+trs2DKrZyW+cicI1AVEFNEJywxRBCSB4pkAOiF5jAMm82GkfaneT2Nq3H65ptvcs5S2wIswthHksCpT4z7Zo/HaravZq/j+9nsNbcGtPBjqbPW+4fD3BQkcc4TsyN5BAHVpX68vd0fTyR5Lsv9/hgRrRkzd5Cxg4eJOOdMtuSc1+v11eXF1W67mfJuPW6nfLlZE+BpLg3gYW4CkBC229Xm2es8Dg+n/cf9/dxqrRrqJEnArGler1fjmtNUZz0U213dBOL11c3DwyGn6f7+cHNzczzM47jx7fDu+z1SLqW5e0qJKFFvBR2JWdU7v7UsZbVaaW3g8Zvf/Oavf/6XaZpqrS+fP7u+vpbzBvFohDEkfJwOuZ917vHImzkjxB4AQMIAUJo201OpJ6uHeWlElAcgquqn03ycy3E+SeSHw2GYxqW0/XKq6lXt6vr6YruDiDIv8+G4GXe7zXqzXjOz6LFzgcZBGIzBRuGLabq5uNisprnUovHu7uHl1cWvfvYTGcfd9edpSId69Wzen5Z6nOcwn1JG98P+Xr0NMqzXl2/vDg/7+XB6f4p2dXVBDMO4CTCR9Xo1rFa77775c20xTcM4DF0L0Exba5IzsiAzhjInRBSpzNxqvby8/PIvf725uSHA4erq/fv3zy6uhJldLeDc7fStp6pC4Y5B5Oeu86x3ZKSuzuw04lNdTks5LVUtzOE4n45zOZyOZkGSCVibX+2uZBrwcBo3W0jp7v5+s9kMw5BT8vXmwOnVs5uXN89evXg5phz1ttZayuzumXFAzOAcBnXhaRBXkrRO/PrmqvMYIk0GEcBJthdrK20LBm42Hw+75y8p0XRxFXko39+5cVOcI46nH9brSa0wwv3t4g7rVTGX1bSFENXamYXMQpmLKxGpOwDWPujOQ5d71lovt7v337/72c9+lpmvLy7fv38v3hQ8hiwdnG+tSdCUMiJEh76jy7moL3eiVHrnQCgipGdw0MzMw8xyzlvkAOoER4Zhvd1sLi4d4Yfbjx/uH6ZXU5f3rMZpFF4226vt5np3cb3bZklU27IsR4imJRFOvXdxy4RsJhDIMApfbKZhGA7L8vFgagW0MXkArhI5wVLmFXPOediseBhPzqYYnogGByTCpRjxVOY5wKzpMt+36szJ3ZEJAZp5z+xMiZk9lIRczQGGnJbFPeKrr75Z/fpvD/vTfr9/++136/X62bMbCTsLbMDDmkangJ4HYRA9tyOeZ5lEAJ4Y1TEAxpwAVgg8DAMPY6l6fziyJLVwBw2otWrFl89fjKsJEl9cXNzsH+KR2qiteS1TklF4TELe0EPApkQ0ZVUSgpw4E5LHfDoKnvUJjD4wHI9zm09WCMEyIaTkEc09PDDJuJmImVNykbJf3AOAiJJXzGNurbiZ5G0rmvNGW1uWinT2FzAIJOiaLFdERLMAcYcI89aJFMPInKr5r//whzqfdpfXr1+/3m63Mg0DRpc6OAOOKQuf52jhgcxEIp1c5wEGxJhS7jwO5DQN43a1dqRiiiw3F0qSTrW0Zktpx+NRBwgrrSI5t1rF+1SNzaAZNDcR1vk4E7KVzWo9shECCgcTMydBIQxTaOxNE7HWJoG71fp0WlpODnmuZW4LIgR6lAYA6yElkc1uvTQ34TAXzmx0mOfgdamEIaXqRgZKuZRCJJvtVWtFVVHY64JMHoaBAAkAALv2jCzCIUhSVcvCQfzlV9/M83y5uwjOLz//mYR5EjZvncFkZkjSmQMWrhEE2Dm0fbKGKVLmlFKniDBzIDUzBzCHkl0DNqupmR9Ox8wxFzMtRUtKwyiSh4QBRFRMwZsIjYNMkpEcvYEWAEuSh9XK3VWrEAmhVS1QECCJSM6MDSOmPCxzHVhogJRpadWarXJaDeMwpK6IjowVXRIwwel0Gla7En2BcBzQA7U0llxb6RJHBwIzTmc9XEcwPPRpYnamuhCSsAJ88/YteABQ/XCbxhWlQbIkIsgyZEJ319pCuHPZGRCR+pTaH804+gM9EJ0CE3LOmYiW0pbWADwzB1KlkNW0HfJhKYfDoZTK0MjNW6tLizBCvFmv19NEAbUtBLjZTOv1enAlIhYxs8XN1ZSAAMy8459TytOwMqynuRJAq6VZdYQxyWY9EZEQJmZE6OYxHoBuzJQyqypKhLVxHFXdwzjJspxyzubNzzppRsAIhTNDG+iTQd2Z3YbcLJjZ/MzULGbff/g4N5dE3LRgF/EhMTMTQTgiOpznOe6OyI/CLUAPREwsBJiQOJwBE6ETBKCBm7u4deUXAmdctTEhIpgvEA0ijDabzXgWWcZu2kzTNIyJiFY4qapGIGLOWVvrUnJ3j25l1an/em5VwRuGUxhjHpgQEdyFkRDMWyeQJ4rEiO7MMI10OtlSjmYt54xIIqLaCZPnoXsARDzOyp6E5mepGwGd1a6A3NrCKJKEgPZzOZb30mUZiqCMubM5EJ8GKRHR7McpHlHnGT62VcQR0cqiiACUEDCRejhGFukj4tVmjVvsGqRlKatEiBMiWlMAo4DNatput+v1upcZNhdVUG1PIksEoBDX+gRSQB/TIgrxZstEU9Vm4UlQkMAxMbnrwABhED4NeUpzEpp22yNjWTSlYSnqrkvTnLM3B0T3DvUiBTxOeYhDgc7yIe10EERA9kAmTGlAxKZnzhahiPUCk1BVm3CfSQhTYKcqBuKZdtYXkoHdwZorKlAwdp7XmVkrQZ1OBYidK63ekNkRURATKnYViKWcRGizWm+32/U0IGIr1WqtdQkPDFOHR1IawKPWtbU2AozjWB2qBzNvxzQMqblVbcMw5JxR3a21tlgwtAqlgToj7VbTtJo4yXH/cLFZj2M+HOdEWKqeWcHoiNjJL50HjoEOROfFDToPk89M4ohHtrtDt11o1c76BMTQsK4UA+oj5SctD3WiT8euTYMIncMsIlQRu9MQMYE54tnJDM6dFTtwRKhDpnEQnmuxR1BxmqbNej3lxNhfPgRC7ZRoIowQIXf0dhY9qnopbVKdhklEVsM4pLxEHadpM6zMjCllFlPVBU66gLswjcJJ4PnV1eXLS6PxICwkgLgCrO1dqEGzznLofPq+aj1DPcpWqDO/EACZEAMQRXJrDQDCXCR1F4vqRVJKpRSnEAQL916ydOcKhHCzcERwoj48d7XgICVEIyBEB4uoIIkJMBESUhJKxHhOi9BaO5bF1REiC1POXXq1Wa2GlEOtloLuCCAAKTNqVHVEYBZE9KYRwUSdYHLmkcXZX2EpM7hPOVMXEHpwEIn4MPiiVIMA2UFb06j3p1NcXr568brU+vHuPgJr0ZQGh+js306kRwAE6gZZ2OeyDhFn3RvimZOccybA4/EIHrXWnPMgSbpOLQ+CRKWUZVmmxMCMwmDhHuhhBPyj6QaGRY3qLp2xf3ZnQx9SDkQzY0AcmAJaa4EGEAIohEOSMQ0gKQgzSZ/RC9E4DmiupbbuFxbRCfwdrzkTvf2RPkwkIqzeR4cEXuosC0/TRCiAgAiJeTEP8zIviElEluPhw7LcHdrxh9sXrz7L4/Ddt28b+DiOyLTUQkn6tBExCBghAJAAPQgCACFCI/pCBwCshqm7XILHuB57+2Nh8rHeOTdwO57Ks+0WHW0xGMUCGcUxFDSTEJ3JigsYP/LuUgA7U/dHaWhgGB2gciiN+0lu2cEQeEwpPbJtCQgDsUGE5ZyQSV1dYCkGi7XFhTJAeETmVNRra+CRJM+tO1kyASQEBm2tAMAqTY9JXxGwmmooZIkhqVJ1AOGHwx3xdHnzk+bw/vu3ljTCizew5JASJwcDLRAGHIAehI5s3SfClvVmBFO3Ak6hsN1d//TVL83inbzT0ELH1haIJtYspzyI9FDVWYnRMSe3MKBHco171No6X0OIgIM6+zEoItQNzyYsZ3PT1NOJexA+7u5e5xERgQcxPbJxHIGJgJlbAi3RWu00qwBSN0eQM0qbeq4z81IKBWg1RlO1psqU3Mysdb5u+Jkda6Ey5M1mEzLhNH339tvD/KDY+hg43EUGfzITBAQIIIY49zoBSmws+pOfvSjL4bvvvru5fob08J//9L/vtleXl9dzVRJ5dfHaTKUtBdgMK1RzAVVV9UbGWeJszeCtNXQR7rsK2CnOwg6MiEgsXd2HIXjut/AsLoV+YHo1RohAT1h1l5z3Uhdbq3Mtx+M8WzvMx6ZmEEgizADIREystXblGSEPw1CqMnUbETYNVbfktZlrJY6n2q5bTZijIajp6e5hLgWIEVytRAAEMZmZY5c1Yiczcl9XokCiQCCozR62F+k3F68GGe7v9s3m6xfXp+Pbjx9vEfi0vIsIIZLWrDbdDMMwjA6k4eagDgTAyBjYZXRMFAHq2lez12zuHpFcvOs1Oz/H4cyPDEQR7pUw8o9qht5BlNLcjTkhRGu23x/3+/2H+WBmnRVKJF3enIkbGAKauvUhFXVDgzTmMYIi0Bxas2Z6lqqGuwMihweQzOX4cDguTgdMwzBYawE0jqtmYQqlFEROnYEO5BFI/XsBg5HQvZnZ+/fv9Wq6ut7Utj+cPlzdXN3vvxvy9PL1er1en06nDx8+SOLsrsEwTeuUEgB2r9uqDcOBOXe1JoE5uDUMlT6LdwACdLTuYhsuDt0OqyslkEiYMfHjMsITYSAgau3FELVqzfS0lMPxtD8c96f9NK0kiTm4OziitwBtbqtxioju3+kQTEREKQ3LXDt8VWpVU2FozdzOXNGmkYaxtMPcVDEZurpZALEggHsFIGamoO4D5w4e7oZEoAHs0ErlBBcXV9c362nCVvZDXrf6bjVN1uzqcgMA//7f//9/+/vfvnh5IaHGSI4CAGYRDOZezXsB5ADNjMPDkSHCgPi8Np1e10vUeKSImhkwECB84kRwnmRjn3p1t4JQVSKBoMN8vN8fTku5fzjcH45CtBrGYZjUoaf47npi6jxAuKk2jGAixEAKQTGb+8Q/CCOcCJ5GVWZUiwWhWjgxSg7n41zymIKs1obESMjAj9wQQgwINIwANPMhBRKs1hMzvnv/lslYwlsdx6kW22wuv397+8tf/vJnP/ub1bh7eHgQjHOb6WomBpCqGZTCq5G7zapp79YDIbEQRW9sqbOrAdQtSgwjqmofFKazdwu4x/n5CHh2Kuj7zt3BrJnD/ni6fdgf5tP+eJpre7bZTDwkykMiGEhVQ5tCsx5jIlwNETixz0bdJZu5+/pREsQ4n3ZAM+jtVm2ujkjJSIgwzNXBVRFpkKyqrVWR7GoASCxE0PMhYAQUwHb97Hq3Sc0gp0DyL/78l2c3L+7vb93p44c7opTS6usv3202G8EAQCAAC19qZUZz9ZTHyOBAbgghwgyEbhYO7t3sCCiQJUi68JgqGQVI14Qlw6heETGlJ5ShU1jPb9gNlqWqx2Fejsv8cJpPpQJS4kyRwkCYhbOANEBXYxYCZOEAU62OvpRTgHV7mNLqXGPs9t8Bnc9y9s/goVYHYiAJR0MdV1OtFZGBYZ7nzgk0VUDvokgRcSTosDo1DM5pfDg+7LaJxFpd/ubXvwADutodD/NqNW7W6zdv3kbE+x++l2VZhmFoqjlLa00T73bbcG1mQZAQutg40IGJkRCCmc+IVkR3EnnU1wO4EImQt9bsbMt19gUws14/hYYFttbUo6q++/DDsdS5tuq22W3NqXkIEpFAEiCwhg4IBOGWCVhErRJ6hLlr0aZuc1lIZBgSEak2d1f11qwEmlNTm5dKJGZADKqVGatFaHQ7qNbaj/48XRwL3X8RWiWiQRsP+eJw3F/uVmZaFlutVn/9619++tlPKtXmJxn85z//+dvv3ggJu3unjTfV5gkRKYl6QxICoK78fbSCTY/JxQN6VypnPxECcIsws1qRkQQ7Hd86TV3P2jswMwcsS1P3peqstbTqiJilqp/YrBYOg1KBqWvlDIyiu5aFaL0/nlLipZZaazUvrZbWEqGFo6O6gcVpqU58OtaTmzqJiC6GSBFGhKrWGzAg0la715j7jxhbAPQ+lyLGcfXV19+xwJDo4w9zK6ftdv3eH/7w2/9RtX28/fLVq+c31y8f9nd5nKTPS0XEIFprZmYQA6Vwde8mkdgcACEhQydPIpkZmAdF4jMzycIJ0B1aNcdgAhPJLCzSnthcqGZmAV3Vfirl/uHw8fYeCDeXVzLkh/1xJj+VpR6beuC5PrOceBQSiAkZW4vTKWeptdXaiuH98XA6nVaxESnMj+wjwtNpDk4k6fhwf3+4b8GQpgA1g+4K2uEiBwjoyc8DDIAYiRAcnTBShsPx42q1qlVxmL7//t3l7uLDB52m1f/1H982XaZp/ea7RRhKrc+fv5QnVbQ2DEI1m+eFp7NAwiAQgJiim4UxBwQgIbrhuRQFAPUIUwZkoYgQpAhGjIahy6JuZoFMHV3t5cRclvm0PByPiLjd7W6ePzeIt2/ePcTJEX74cPvm/TuStF6vp2nYbdcD03aaNlPe17pRG8fcP/599e9vb1UVU4b5lLnbwumxVENc3G6Pd4qxu1qf7meDCiGEZEhgjtwTQDCL24+0RcQABIZAhKrLertelpKHbOFXlzcfP96/fPH6dDoVAlO6uz8yY86pzMvth/dS1QEA1RR0SNksjsdjSpL5rOt3Aj8blVFn2joAklBv25EDwdxczYhScDCAILijebg6m7urOwOrm6o7gKruD8f9fl9Km1abq6ur3Wa71JKFPn6435+O+3k5zst+fjD4IALjOLy8uX71/Nk17EaLgnVoZmbM/N3Hj9/f3U15vEZRg96vLtpaQAErGpBQiF5e37yb/3o4POCw5ZRNDUAEqVnT8AHRwKhbQZ6nPNYBzJy2h/2cc3ajbt41TMNcjw4+z6f1tFml1AWIeUpFTQIJAJoZAeQMqt6quYejB1HvFonIEc1Bw/uR6rrWLl8IQHPvfDwNByByR0Yw1fPkK9xdAZtZZ6iWWiy8mRLzbre72O7GlMdx/PWv/vZw/M/H/eHZ1fXLV5992D/MrTbz43H/9bv3SmREq3HaNwfTWjWltF+Oikx5MCRyYATrulaKqlbDnOS7775Nu9l8SYMbWSuLOa/Xm2VRROzkL2YMiDA3bN3RNEAB0WwgISDqt6RUU85ctIgIBVZbRCSnIcICfZiydDQeA4jALMx1HMdwNHBhdiAGUDdwYkEPOVulISJTqEWEPkoBAcgDzYLCIEIBKKCoA4SFi4i6mRsj1KZ3d3fufrHbbbfrnLNbY0hXu4u//83vrncXxjybUc6yWinEx48fv/rm6/vDjHS7XlcicjVVRab1athd32ymlQFKoDmEqgPU1lzweDoVyc9ePYdhNaN/+Hh/sbmYi97ezcxsVjgzM+o5zeqjXUecVR/gHtod1rvGUpsxc86pNyZNNRxdCwCYNvMqZu5uQiQh3d6rJ2IMcOfOygzAICei/HQFDndbTw8LBLBwQuIARwizCGKLLq6hgR3CmzW1oue7Hk7Ho5ptN5ubm5vddjuk3EM5E23HYT2Mi7knXg3jfl6q+Xq7e/Hi1ffff//9h4/jsTN4pctz8jRcXt+s0qCnpXcTy1xCwMKPpyI5NWYBev9w+5Of/vT62Y3FLiB/+If/OJ9OAI4oy7JM65XVAh6u8aTp7A7mJKa6nJn2SCTJHUPRXcwMgiHY+sQwp9aaaDgxN3cLFWcRPFgdVJMQh1P32HJLyAy8uKJ2UiMAABKbB7p108tu9tMzPj9e6ZK1FG0pj1UbQSzLUuellsIozy5unu0uE6eEEBCtLQrxcDpGQmWYTWdUTDjmjMDTMErO98f9vMxAMeaB6jykHIDEwmNe5mP3swmOIGzBhnR/PNaBTxDFjtVX65vVf/rjP//8Z3+bJlVcigZKSnljFhqZCEMQEIMgogVyeBDyPM+r1ep4PF6M4+lURDpWa0OWWnu32q07JTzkzGIEGHI6F4mPHne9TWTE7kjUSWR2NrzCfgkFRHTBXJ/aP8LqT9ZNEQRqEE2XZqXW/eGkqoR0fXm93l6koV+hAEBSvS7Lcjgd7u/vj6CVqJS5NgemnMbVarXb7YLxUI4iCQiZEzK5+3GZkzAAmHuYAWF41NaKtmGaHk6HzbOr689e3Z0ON+vty5exLJWZCTgGdnfTmsdERG7WbytxtwiXxIGxWa8IYplPY06Hh/ucBm81pcTCtbbN1IfeDuClzCIi1bqNKHX/SKLUR4wO0FQpGBiZ0MyqWdfBMXPE2YCZ8NElCjHcDYAfm6gON1STau7utdlpqadmGDiN4+7Zs2G1dmKLqKUEwLzU41KOy3wop4JQCUurVT1TRgohubza5VXOp6EbB3e0sA+oS+IIBWtMxEw1nEVAW2t2/7C/b2357k0FuDvMpY13d+/cQbUGjD9W8hERQRxI4c27jDzC//aXvwCA169f7/f7N2/efPHFF8DkZq217W5ba72/u728uj4tZZqms312RBhjV0yOQ3b341w2q1EJOJyDNALdOtxcTdN5G3I6s28JCcLOZllOyI+gPSIWDwNStVPVw1ItMKWUVhsZV4emi5qpLsvSJY7VtKAbo0MUr0ExroYxT4ho1jbTKJlX63Gp1cxaKYlFw9V1qcVbFQjJjEyh3q1citrl5TWuN3998+Ynf/OLQDi+Xw4PJ5GNBWIECgGBqeIn8mE3i4CmM0FYm//yl798/vLZh+/f/v3vfxet5pxrre/ev1+thm8f7q4udwA2ZA7QsJA0jLVWC8BwhAjA0gxxFgITcmZIKSfuF6UYAAUaIISjIyJjBCMisnYDs24w1Pm6QYigFoHYPA5LmZuKSJpWw3pV3dpyQoAyL+7Wu7XW2hKmhDXc3PMwiAghaC2mwTlnoETkoEur1JwRgkKbHeJEbushB2Hpdz0gUx6mLICE0+QhZYHrF8/Habj7WJY5CEUkAYudvampg6GI2FsDQr55dv3y+fM///GPrSx//fOfPnv5YmAKbc+vrz5/9fIwnz7/7NXt/d2H29vN7kZVP97diuR8OJ0wgseRiDQ8zEnp4TQPTJoEIogzImOAWjB3MxHSADAD4H6XSAdvMM53T1CcHXUCobV2nE+llJzztB6n1UjCx7JoKQw4l6VrDlv4YZmPWpcw781M+HI4gCMjYhAhCid1S05LMQ6yojGmuZayeBZIQuzJ3YPYiZeiBzOcVpebm7/5ZT6pauNaLOcpPMDTvDT3xjl1H7GIcLeUhrNagdKzm+eHw+HFq1edQvH+3fevX7/64x//+POf/+zNmzffvX3zb/7Nv3G3aRqb2+X11ev66sm/20W1MUc09cCAACGUFNRU54LO5iyCcHZ86TAcUYQGM0NId5/j8yAkiFTV1NxaKbO2EmHTtBnHERFLK6fTES1SShZOENXdVefWmoEpKliZKzIdj0cC3q7WQ0rTMAnnpRYnzGmMiONxdqqIgWYLQpinIUsa1KGoHuf27uFYcf9235yTAs/lIZS1oBuEh4gwp2q6LKcnINysmUGE1Vpvb++vd/kXf/NLZP5//0//09dffrksy69//euPHz8eDodf/Ozn+/3+3bt3L1+/0mV+8+bNb3/7WxnGNE5ZVaMbrXQbilIRMbN44NK01lqIpnGcIgtSQCC6IPU1BbAgArMu2gfshgtogM2j1sW8kpAEk1CtpV9GOR9PRDwNIzNb09OyNNV+pYhZO52Ww/E4rCbwPliSzfZys9mYhQEeiw7rzdK0npZuSRCmXqvWenVznYaplHLYz4EyTrt50XrS/bIsGsj3U17PpeU0dszbXc2s37HVDeQiIjDGPB2Pxw8fbr/55r9M0zTmYTOt5tPpK/oWPU6n0+vXrz98vB1W09XV9eXlVV6m+e2b03EWQbrYbE+nU3Nr3siH0qqzZM9LVUbicASPJFhKl5at8xgQFiiEfWjobsYc3R6IM/X5O6KaNVODUG15TAF2nEseh493DyKSg5qHRlQrh+PsCCLJncpiZjjkdTimnBDxVI2Op8PSROT9Dx/v9g8asbQqKaG3w8M+J96sBnU4zmV3nX1pBmJomBhK3R+K0bC7uChVm1r06zIgIkyjG28CccLHWw16ahqGIRzzZuMBs9nHt28vtjsrSgHq9O2b92oVEcdp+stXX0eE5FSrShIWpggPNXevfmaIRETV5loxYJXTIMkAltaISD06O9wBIwxV4TH1MyBxAISbuYMhOWHVAEm12eILIVe101wAWhI/VWdOJDIrNI8BMNQXg6V6adURJHfTF39/++Dagc7ltMwtALOM0wTzg6qunl3X0mgiIP7h4y3mddPTXHRWsGAkVqfWEGggan1iHxFB59oPzgYS0GtYIjII6lV5YjMdhoxpKBZC6TSfhNgBZFgjYtFmpXoEM8+nIlNOVmWP2G+L6Ds/EDQ8IZemBC4EpwLuufVLtphjGEBYKOis9kRQB+iYrbiDekQEMjWkakZJillrMU5y2s/vP9wD4Ga9GwbwaED88eHhtFTJ6eFw36lhZ8EzUx+xo4c11aWYRvMgQY54mJfLddrtdtM0galwauaJWD0swIObhwcDMQWZdcE2sAAiGAQE9PvnelPprkTk/eLaDuCBeXAAqCHJWLVhYgUSTqa1dy9mSkTMAgDLUkUYkxCFm7XucI+IrTVGIgY1FcBmQVUJJchOSwWmCPCcBiaCEApGbGb9FIkDgJ2l+8QgyZCW2mrz1po5PTzsT6cZHXVx1buHw7F5LGqOwJIXWmo1BqA+GSc0M7BYjaOeFlPIABdT2lxejKvpVMtqnTbrCRHRpZouS91cpA/3+2aBLF6tmgMkSUPn1WiYh1NAgCMxATGJI4X3UY8DdaAHEZCZ1QOBa9Gcs1nUZpIGYDTrbjBILH2OS4ySk6yHHKbTmEspwJJSIpZlWSxcw5saEAWCBagbh6hbLSpYwANyyoRgAdz9/sLDizYIVD/HeCAhyeWw7ydKa9uO683nazDYPxwPh5MEqjsHELCWWsKYISUy81YNGc7kmKagsEt0s7u8ur68uLrkIVvoHEuEUUBrkTlLTg/Hw7KU0rAZNnU1NHKkR2mLARAHWkD3PjTEBN0cBxncmBkesTcC6I09PjrCakBCMIdhGmutWg0xcs4U4GGqer6UeMzn0S8R+ePtOGmSYRg6MamZYetXKEgpjYgIkAk5sYcjkRBDv1RS7YzNALlbcYMzX9UIWQCfXV3vVlt03N8fzMEAD/P8/vbu/rA/HOcdt4vt7nK3C4dqSpxqWK21HufxGd1sLnar1bQahim38OJ4mo9hurQWEavtRrU+3B8bkvFUWluaIY0AoKotlEiQu6oFDRzP10ZDnCeJEEwi1CG3AIsg7tN5FtNuFUK1FmZuaiKSBrF+HQ9BZ7LIkBIRPbu+rlVrMyMyNQCota7GKaXcGYXckZEYWmsNWoSBZ0JgTBgumB3OJkzdmwKBA6yazvPSuTdqhuBDHi+macp5M6yuplW/hLZG9AU9zovVOUuapnW/q8EJ70+Hu/v78eWrzTAJgLfqYM0bJPTahJDT2Frpls9LKU3bYsirUXsdJmgRZs2CrA8aATsaj0wYQMzRtR0BiOxuDl1ZCACA6pk4AlwdCPtOd3dgtAhwc3ek851G3SaVO5i0Px6Pp7rUNqtGxDiuOGWDWJaFEYeU1FVKIUrn+4vcu8ct9dvoAhnPVlQAIMwGoarzPBMRI1qrKeXddnt9edWB6IGZERhivdmsVqu51dIqz6XV7gOHLWxx5/Vut9ky8ygy7x8UvarVVkhSEIgQIqSUzOx4PDa11nx/qhNPtVZVoOT9ntaICPeuD3q6jupHhlCQuyJF04YYrsGcENBMp3E8zTMigkegppQ81Dz6/VadDXeGiTFk7QIAmfFKsmMBgpMrETrF4qqqTjiwqCl5oBpkscDzHcjavMKYpZRT9pSzBIRZd5NuGFhdW2ullGlIY8o315c3V5vwExG7qWrosQ7DiD4PedykZJSaB44IAIk4Iuba8jA08Op2LHMInhy1mpqvQsABaHAEQluiLEuc1DGvVtc3IeN/93d/mC5uvn3zw7/89Yurm5dffPUVIYBVbH0WjtqCOHnnLZJHGIMBBfiSRww/AITg8Ovf/+2HH27v7w/7h6MrCHMEAbqwlFY7vdkdUkrmIe1xc+dp3Lj7aWZAhCBErV1vnxMTuJOZARznEwG2FrUupgPDKiLCWnd978eh380TQK21DsVHBOUzqNpaC/JM7GBF22kpD4fTOK52u11KKQ0JAM2shavpertq6kny8bgvrWm4uhkEMlXVeZ5hoFZb0dapERSQh2HY7O5OVYb84cOHd+/e/bt/9+8+3O7/8sVfO8s10JBFEPV8qacBkLWahIjAzQFiyLwstpQTk1a9f/5y8+zZjkm+/fbbzWZTtdVWlmXBU1sWjUAi7p4AApK6gmEcV7W4xDKQMFEEH0tVbDnnhojh3VeJm67GQUTUo1Q98qzWGGEu1R7vFDUH1Y6gmroBITD1ixMNomhzsNoNzAECobS6aJtbZeZBhpSS1vMNacZ4nGcLN4K74/3D8TBr1fA0DpQIgz2ihSOTBxQtRSOxpGl1tbqYlzqupvvDAxH98x//U9cPR0BYWGggOVCgdq7vkMW1Opjr8uLF7mI3Sbo+nY6Hw+HNmz+XUsZhVWtV1eOSU+Zpmn7925/+wz/8Y9Wy3VzPRUUyeEg9G+ACU8oiCWTiwQCOqq7miIoOhADORCzJam1dZcPYwA+neSGchgxAOQsjAsCAhMgerhYOlDPlYcrj0O1q3UDRukGwYQSjY5j5Mh/dPcw6d92arzebkzcNPyzz/njczydIzCLA4oTFVCFKLXNZarPZfa7mMoKIEztQIBGnn/zsZ2/fv7u7v+9jxMTJ+1X3FBAeCEgEYWEe3tzrepWE/eHu/ec/eblZb5+/2P3TP/3Tf/v3f8/MX3311Wq1Wa+n+8P+T3/6J5JFchnNa9tr9WmdtFV5OM1THgQQkYc0rqapVj0sS3c16LMnILZWPSChcB4BWd0jMDEahJoFArKcRRIBQDIMYgCtH3aRnHMaByKM84UURuergEI9gNAINcIxgqAsp+PxeDgchoehm0AurZp7GofdaiNDbuEO0VqrrqdlnstiIMjCQy7Nv/ru++Xrd05Jhul+P19cP4/A9Xr98PDwSPNHJA7qgpkItwj38DGLWbn9+P7Fs5+mafzTn/7P169fTqvd5W7z8eO777///uWr58MIX3z1x1//+lfj3//q9ec/2V1M7vnq6vWXX3z35//y1TBt5XgqmbMQUwRTmvLU1l7MQFv3VVcPcNWmGMDILCkYzMNM1YEJBmFD0YDqnd0UXisgLaW01qAzT4SZufugIYZ7NPd+U0FxDUckMQoQBofT4aQEC1htS0qptJbzSITb3S6NGYnHPCDicT7NZQmEqt6iArATOZGGBpIBafVhXLXWSmmdGfWojcHwwK427OObAIKYTw/L/LBe0cVuHbD8+m9+wYIBIsTXV1c/+fz1l19+gSNPQyaCPPD/93/5n3/zu7+7vLr84ot/fvXqF3/8039ORnI6LpthzWLmjhGc0nq9XtzuamnamkfXs2GEIKP6SVvXW3TVNTsgiQRWc0ejAITw2hywtoaIXaPoBgGUZAA3FE50Zu55uKmrOwh0LhkldqFhHKewTmQbhzTkySDSOFh4prSaVup2OB1LKQ+HQ1UzEI3mTArJggPFAhGpqUVbmBM9CifcvN856moaDojSxbJh7n55tfvFz16L0H/5018lRcp4v19Op9O0St98c/x4+8O/ef3fpsT/xz/+4+9+99v/4f/133/7zdthmJ49v7y/fycM5rMcDqfVuG5ME/OQJFEOIVokjwkOBSAASbVJECAupXqm1to4pLzekIg1NY8WAIYBfSrC4I7qajGOQ84cdnZfQyYMT0kYsrbSr1tN4RHuEaU2AMCU56arlIMpr6b9fr/dbjFIEEWkNWXmzFJrjRaJMxBLTgjcaiCzpEyqVQFAltpSGoiktda9KNrSHCNhIuGg6NeEd8QuMQ3DsBz3InI6LT/9xS8B62m/F5GffPby889e/vWvf35xc/3lX//8/v33KPyP//iPu4tLItkfy2Z99dcvvmVmU5O52f3heLPbnmqNiMSkbuM4TGUcawU1NaMAIgyCIQ0zWJax1XaYFwRnpDTkYymZbRqHxGweQrioIVDXFClYa0oky1JXmadxJYRlAUlprk3NJMlpnvtQ73A4tNYsfCkLZllavRIBIGtKAYl4O61W09SKJmJb6iPYyMwYMlqIatMWTudrBeNsmYTd0dlDLRgcPbxrOiO62ZyZLjfX18KjamOSeamvPv/p8fBut9v9+3/43//tv/23rbVvv/328vLyV7/61fc/vH///v2LF5+FS1M+7QvLQJRFUR5KpcNpEmJmc42IzDKlNJ0vQXIIJIIIaG4azkgkqZqC+ZiHuTRVtQy2RGbJSRBFm2IEMpUWQoyIy7LIOHQLj2kcwCMQRBoxB2Kptc9mEYRI5rm4x36/N7P7+3tGWQ0jAkzDKMRRFdxBDTwAoDUjkSQZh6Eu/VogauoEARxdzxAR0GW+QhHWzo0NRL96GCNJqmWe57LfH8zb+w/3V9e7//Sf/vLi5TS0+OlPfnn7cR8Rr199/tlnny3LcrG7Oh7KOGymceeQhL8Cz4QiFbBVIyoAeQ3UIyMCJKCMWCM0wAm6nbu5t6YNYLVaoQYwkbBGIFMgW0BRc3dLEW5E5EDaHBOrxf5wTCw6emk1MXGSlFLO2RHmpWhrVpZamqHknKFZQNRSiGie5yFlk2RmeSUIUJZFazEzRowI1cYoBpYBXKO7HwJEgEGge4tAD0gkzAzcryANZj63jBFEtCzLOI5lqf/yp78Se8r0w/u7Uua7j/c5/7DdbiMOL14+P82nh/3Hq6vLnPOv/uZ337/9MA3pmy/fIAyIuS4uikLgiwGXtl5ZSpkJoOl6tTrfjb3MZmHRFPDMJFV1d8mJiLr8bkiCJGlIYa02dWyJGJnUDSS7exBqeDNdahMk6pcBp9TdCVup0GxMmYMpT/1ii8NpTzQ4xJDyOI5JSKgfFK9aLTxnGVbDmqZmJ7UGnFprtS2tqXogy9nfol8xHhTdczLcXXtzj0z9TjF0TCxlqUmoGZDF/thvssinA+sgD/cHN/3um/uANozy7u19beXVy9fvP3w8nfDu9uSGQx4aNAlMXQGyrzXJHmO9HiXllGkgosd7qRY3pbOQqwtwrFNIaq1MBMTnaXBgIHSXfbIoUecIRFyv1yxSmx7nOXUpuLYOyoA5Im5W681qXdWSTOoG6K2kcWRHX6/XUx4QUTKrqoWXtjR3mbJYTpDhsK9zldUY1oiABdnACQI1gAIgAgJQHS080OBMb/F+RXVHHZdSj/vTej1NeZjrLDKauoGPvD0dlmHYJfH94X4chuXUKnmAfPnFW7XY3/9VeLIaiy8ig5CniOaEFrpfWsTeYXW5XgnzOE0X5mq94YnzPciIKSVVLaUBkFnkSSJiLlVkDlcCHADAgTIlTlUNwEurSWhpJkzNdH8sBHgqS78Cfj1NY86EMs+zqiPhJBl2uxaKTJx4GFL37jBT16hWjUhyylNe09TsAmRxpCBfrcZodry/R86IZK5AbOZE1EyDkN2BkBjAwdApziWTqu92G6uttQYG43q9398Pw6Dh42pda42qQ14ToRpi9w/lzNSxCx/HqWq4q6BjBCMDkLTwQy10BEC/XG9zTqvVqpo2D91bNFU1yMLMrVkppdeSImLWhmFAxNacMBCj30fKzAgolEqzLBboLAIkx+NpYDqdTomYqIufsBf9AgiBqyGnMc1aNRSiG12qW7h7NS2uxAm8Gjgy5CzTaqjGkIYpbweHk9ZjqcAEYURsEMR9M0hEnK/aeBRcRTyyEJCKKiIPw/T+/Yfr60tVVT/Wk4tkDWdgBjYFHrIH9gtDuqh/WZacRwMTBvJ+nYwFkqPbsS5xsMTCtEbhaZo2zWpriDXM56dCBJ9ksESUNptNYupkNndHjGZKtWaiIQ0OUVp1iq6scffFGgZk4ZQySGqt9YsrwaMui1M4Y2I0A2R0NwBo1pjZLQIgBAKCc1qPcpwXRCTCQDwcHhpSKbN79OuazxewEwGdX/aZyBZnVi1EAMIyF0jQ7QKJaBxHs1D16vvtdqulEQMAqipzMnUidgPE6IxXkRRh5vZ/A6WGzyuMZ43wAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=112x112 at 0x7FCAB5C7C048>"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "i =813\n",
    "\n",
    "img_info = imgrec.read_idx(i)\n",
    "\n",
    "header, img = mx.recordio.unpack(img_info)\n",
    "\n",
    "encoded_jpg_io = io.BytesIO(img)\n",
    "\n",
    "image = Image.open(encoded_jpg_io)\n",
    "\n",
    "print(header)\n",
    "image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:10:26.732578Z",
     "start_time": "2018-07-21T07:10:26.711066Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(112, 112)"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "image.size"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:10:29.714824Z",
     "start_time": "2018-07-21T07:10:29.676756Z"
    }
   },
   "outputs": [],
   "source": [
    "bounding_boxes, landmarks = detect_faces(image)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:10:30.404858Z",
     "start_time": "2018-07-21T07:10:30.386340Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(array([[ 13.36201936,   5.58984986,  78.93511893, 104.44713098,\n",
       "           0.99996698]]),\n",
       " array([[45.040733, 73.22949 , 67.01588 , 46.294598, 68.35203 , 47.975132,\n",
       "         46.75182 , 68.91486 , 85.37722 , 84.38674 ]], dtype=float32))"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "bounding_boxes,landmarks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:14:20.172835Z",
     "start_time": "2018-07-21T07:14:20.138160Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  0%|          | 0/1 [00:00<?, ?it/s]\n"
     ]
    },
    {
     "ename": "FaceWarpException",
     "evalue": "In File /root/Notebooks/face/mtcnn-pytorch/src/align_trans.py:FaceWarpException('No paddings to do, output_size must be None or [ 96 112]',)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mFaceWarpException\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-36-1da710ed1190>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m     14\u001b[0m     \u001b[0mlandmark\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlandmarks\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     15\u001b[0m     \u001b[0mfacial5points\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlandmark\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mbox\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlandmark\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mbox\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m     \u001b[0mdst_img\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwarp_and_crop_face\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mface\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfacial5points\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcrop_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m112\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m112\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     17\u001b[0m     \u001b[0mfaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfromarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdst_img\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m...\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/Notebooks/face/mtcnn-pytorch/src/align_trans.py\u001b[0m in \u001b[0;36mwarp_and_crop_face\u001b[0;34m(src_img, facial_pts, reference_pts, crop_size, align_type)\u001b[0m\n\u001b[1;32m    258\u001b[0m                                                         \u001b[0minner_padding_factor\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    259\u001b[0m                                                         \u001b[0mouter_padding\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 260\u001b[0;31m                                                         default_square)\n\u001b[0m\u001b[1;32m    261\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    262\u001b[0m     \u001b[0mref_pts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreference_pts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/Notebooks/face/mtcnn-pytorch/src/align_trans.py\u001b[0m in \u001b[0;36mget_reference_facial_points\u001b[0;34m(output_size, inner_padding_factor, outer_padding, default_square)\u001b[0m\n\u001b[1;32m    102\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    103\u001b[0m             raise FaceWarpException(\n\u001b[0;32m--> 104\u001b[0;31m                 'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))\n\u001b[0m\u001b[1;32m    105\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    106\u001b[0m     \u001b[0;31m# check output size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mFaceWarpException\u001b[0m: In File /root/Notebooks/face/mtcnn-pytorch/src/align_trans.py:FaceWarpException('No paddings to do, output_size must be None or [ 96 112]',)"
     ]
    }
   ],
   "source": [
    "from tqdm import tqdm\n",
    "faces = []\n",
    "img_cv2 = np.array(image)[...,::-1]\n",
    "for i in tqdm(range(len(bounding_boxes))):\n",
    "    box = bounding_boxes[i][:4].astype(np.int32).tolist()\n",
    "    for idx, coord in enumerate(box[:2]):\n",
    "        if coord > 1:\n",
    "            box[idx] -= 1\n",
    "    if box[2] + 1 < img_cv2.shape[1]:\n",
    "        box[2] += 1\n",
    "    if box[3] + 1 < img_cv2.shape[0]:\n",
    "        box[3] += 1\n",
    "    face = img_cv2[box[1]:box[3],box[0]:box[2]]\n",
    "    landmark = landmarks[i]\n",
    "    facial5points = [[landmark[j] - box[0],landmark[j+5] - box[1]] for j in range(5)]\n",
    "    dst_img = warp_and_crop_face(face,facial5points, crop_size=(112,112))\n",
    "    faces.append(Image.fromarray(dst_img[...,::-1]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:21:45.873749Z",
     "start_time": "2018-07-21T07:21:45.857902Z"
    }
   },
   "outputs": [],
   "source": [
    "reference_pts = get_reference_facial_points(default_square= True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:22:21.544120Z",
     "start_time": "2018-07-21T07:22:21.517479Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/Notebooks/face/mtcnn-pytorch/src/matlab_cp2tform.py:90: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\n",
      "To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\n",
      "  r, _, _, _ = lstsq(X, U)\n"
     ]
    }
   ],
   "source": [
    "dst_img = warp_and_crop_face(face, facial5points, reference_pts, crop_size=(112,112))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-07-21T07:22:31.344783Z",
     "start_time": "2018-07-21T07:22:31.313710Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAABwCAIAAABJgmMcAAAzBUlEQVR4nL29TZNjS44deAC430syPjJfVXVPtaSWmWx+zvz/zZjNTtNSS/U+MjNI3usO4GiBy3ivW4vZTJGWi4zMCAYJwvFxcHBc/nI5nXpvZmszUz31vrZG5mLa1QAsTUWkmbamJJtpV2VSgXBXoLeWoKma2WldTuvS1M7rclmWru3Sezd9Oa0vp1VE11ODiAkVdPc5/Xa9/vj4iJkJruvpdDqJqjV7fX1dliUi5pyZTpJkIG8ck7yP+cvH9V9//fY/fvv22/W+BSYRRCQikSQACBIJ4P/5rz9/v254yqP9X//nf/rzl69fXl9fz8vr2i/n82KNEZopgJmaKUwIJCJJqVdKZIRPB5mQFKiqmrXeVFsz66aLtaW1Ra2bLc2amQi0GZVj7GMMtmbnZZyW/fXFp48xQLXW+rqe1rW1pqYuGIw5kUwKUkigEdYbLhdmurtP5+ZJekQZlICoiKhAyRR5jjEBoP3Tn//y09vr2/l8Wtvr2l7O526W05HRzZberBkEKUwmmSKiagrJSDIFkhQCEIiqqoqaqaqgQZbWuplBVCCAKEwhpuuyuAmZmbmKnE3GrkOFiWVZz+czoBAR0AQqUOFEeoZkLgYhmXFWvK/Ldjlv23C/79sec05HAFBVMQMAEYg+0aLtL1/f3s7ny7Ke1/b+0te+NNXsgjRT6c1EJJlqCihBUW1qImBmRgrEtJEgKCKiKqoKADDI0mxpTQXIBGhmIoCyi6S1YIY7VNnbsMZ1JWHW+nISFZKegRmBbAIxMVEHkZGkZVrmSnld1p8uL/vIj23kDPcMglbWhIgo+DRrAmiXdTn3dl7aeWkqBMNUFmvIJClCFYKZ4aqiIsIEU0UFpEFI5Cz3NGuq5T2pqt10MekGU0UATDMBMkmAVAihJqJKookKAKqqmTUKKDLDychUwIRkpJIaaImkJpAm7+tlvshtjx/3sZ84b/d9H3NOi2ZmrVlTwRNt2l5Op3Pva7OmokhheBAiAiiIRCJJAiliChWBZDAiSRGx1gQUQAWmUp4FlaZqWj9ARSQymRWXhYQAIiqoX0TAmgoUEIGq1scIUip8SBKEqq7rKiMEASQZIVxMzr2fezv3fmve1EjOOfc5ILL0tnRj5hMNejmdzLqKCYUposgIQEACKhChQgFpqnWayQQpFamAZpWQTE1NDRAy8fhZgBUQyAyKoowpInK4jYiqHD5EkklCoElCaE07eyB9JpMEFWqCFJpIVyywl768nk5vl/n9PhQQCCrGCNwDyYgnGnRdexcYKCSzjrOACZBgEgpQIYAAhzmDJFXFICbSWmutmVmZSVVF2sNoQDIzIYAKmSkiIgYABASf3yfH7yOZAiWSQUHrJu0EE0fO8AgXNoEoxERM0IXdbO3tsixrb83MzNSVdACZQjlM/CSDNq2jHcwQBkKgCqGAIHC8RwpoLqKGsjsAKISiAFAeKiIQsdbKkQ97RjBAgaqgfq58k2AyEyIpIgDKOUmaGEzrm9VUgM7WZxuqEUIRKBVqpDFUaMLV7LT087osvTUzESUFkEwkSD4xhopQUHahZr2xFB5h9HiQBMMdkhABoSJMUpiRbISK9WZmqtr6oqp8PEQVKpmpkEp04Od7JIkK0J/fTyCDzqyII3U0QK2a7AgUAhU10YSCJlyaXk7LeV16b6YiEAICYSLwzJyEBkkRKCHQBqhIZuRRb4oIVMRUK7QlUqAqClGCmSkiwUxAVLU1U2utqWpmZvlypZnMChckGcFMRhJUSbDsXLY94m2EQ820TrBZbxTxCHevur2+UwQKCrKZrks7n0+nZWlqADKpCuZnuHqWQcOHAIKUJABTExVASSZS6uAqJIVgAgZUscms1gWROX2O2QihHakfAAmImooamUlSAWYG67+gwoQSiUemohy+CgHJiABmIivQmqqpBohMCCGEJJkMr4/vtCxvLy/9+7UqkToKlQ2eaNCYAigShECQYqoQERVR1NlJsAImyQAAKiimBCggEZ5jzExGaxARbaoqQoioqUAiPCOOEglyWC0JovytCigRICVQUZVStUGARLrXgcj0Gc5MZgqoClFK+WnT3ns7sqSKtnCPwFNjaKbzePWiaiKSVe6oHGELACl8fBdRbwyVSYDIhHslazPLBMDPCKyHaY15xMoKnZmUPL5EZfnjpEg+6mCKQAAyycggQ4SNirQIBAGmqXVFk9Eyz+BPq/7Dpe9XaXLZAyHnmTLuG/zjSQYtLzv8Q41ylDIKUaD+iKriyEIAhJXAERHMrKBZGSkzyQAowmr8halqS7OZMUYwo9y/nIrKKvAfKb4MqlXsgJRMiJTdVSAC0yMqVkmnAlM006baLc+n/tP767fbPc0tZMI6bGTi/hx7olE0RRIAqn457FjHs95P1ZeUrIJO9fBlkKplkOMhj88DwGdlmpllcROd6fVlX3picmZmQlVEqlBTCMw8omJrWR9AnfEKh3U8RFDHRE2a2dJyQBbIy8vl5XK5+S1EVbvDmj0JuwPQIkKpVIU8KqVqWwjIEXzIgppIUiprVwVQiJzo53mvCv/f/Y6oKPio4Y82KT8xNgOQZEZGBgQwfRRUlaCEoHuER0bk0QunHFEfAphIM7NEI87L8vXt7bfbuM2ZtIQkn9gpBWkABfn5XsFHhKxAICQLaiuDljUPUIkpvwNMZerj71V2ffbRVYe11jIzMz1mRlShKiLINJEUIShJAZDHp4hq2qLOvWRmPLKM4HhpgjRlU7Tk2tqffvr6t++377eRGfkoZZ9k0EyhCqmkRESdMCmUApWgBIAcbSc/ndHMmEnmYREgMyPiM56inOvApJHHJ0KS7j7HRBm0in+BmnXVYLj7jIiIyE+DMpnpwfg89aKmzESGMJEpZFM2gSnOp/7l7eXbbeRIQv/3Q/P3NCgASAICBGGoNCx8dMCPt5R4tJjNmpmZqlSUfHQmVTkeJ5p8VDlZOS8zY3pGhIf7DHdEHh3Tw4ES8Iw5x8yMiHwEGZZjVgtRyDOA3/ECKGBgAxqo6WD2Juvarr4jqfpED2VKUjIBkXaUiVJxtCr58gjmcZxNzVTLXq213itoytFl4ggR7u7u9XnoZ6vukRHhnpGiKpCjAePhuwlkJlARtkB+FTERyVTRPKrXigaZIoUaZqVGBU1hKpq5Njstre8zQp7qoTXYEpLKFKiCFMqBKUhWh8mqSg9/fDzKxCTINLNqkD7D63G8M1Pq6QtM1RRVhZk1SGQmMzLrgCsIMQIGSgpR8VoJIAIiSTYVSXoEGMFUpYoqREghjanpp3b609f39f3Lnwd//rHlv/z3Zxo0PZNAh1IJ0aNil8MkyGQyBUcyce92GO6zen/EWWQm//BfIseEKSKEVFFTFcBjlhd6+BFay7Xr6VQMJtVpHa+HQgXBDBAFXYmpKuEzNFRUKAo2FRMO38cey8v7T+cz+vrLx4/nGdQ9jAJVO4YvlRM/wV+hqAjL6SpERkZmtsLrIKpy1P4A6sxGVJA9EkoVW2SU+TIyMzyQNad8wHcC4IAPqqkCUBken5j0gR2qQmHHOZgRKm6Hn0ZTLGqyD0Hebx+//vLtfntSmwSgbfuwVbtZARORCZJCFVi1RGai1EcRCRwuWxXq463qZzl1GKE+D6ACqwJQrTasqiWi/E9bxYcH8JqP45+Z9TE9GjB+Fm2ftQYFInbMTupFEEp006VpSu7b7Xb9wfTnGTQikxmggYdBVUQkQQFMVf4AXFS+IshkRqSpaj6yzr8NAo/y4DMa1BPow9E+K7A/IKH8356Eis+IHNVSMMAkq1PiUc9JoYSizUwj6N5FBlOZ53X5ydbnGTTz8DYSkXmcPcJURDSlBpxIHA18PpzIVTUqLWU+usSqT/GZkQ7DoeZyZeKqvTJTCAHy8ZwkoaIoSPiBPGcgjlFTFboPN1Upt1c1661lguk5kUvvM7KZ7R692dcvX5bU5xkUQMpROQdTIKKF2VEEAVALoz1MRoEGZjX1Aj3C6KPYru7o00BAhB+B4Jh1ymFT0eoIBZX9JUghCnDGZz0fwXxMYx79mkAFTSQ8IzMEqDieSXfPSFUTJoil90i73sYTDSo1kqRHmB5oGoucgQyKkCkHaikiUImgiEhA/TizrfXPUikfjzKciFR++WPBn5l1YD/HHHjkNBAKNYXiMxDk7/ABIQiSqoQgWZjeI3wTTVq09OS69G8f9//6L//jX79f9fzleQYVQZFAADqhUC00XSpRHOjnI7CVk1Xtycj06lahtMOBPp207GtmyQCPoVAe+SZNtIb4Rxz4RBCBGkllReoiRrAiqTU1D0+mmhF2tCEBiiyZnk6XGdNMYx/d+pe3L79cx//8+ZdnGrQSd2SmKIQFeUAVqZBkPgqiz1zxgEPrS9bBlEwXRERh5sd/MN2TkfqHRGRqBjEzeqZHRCRAEKIHzlJ9aiaVWX1FfaiqMDWToItYUj3pSVEePYCaamoqg8XJMFWVJzaeQANRHUhEIFKoIlCBFQenMskDnMcD2Dv8CfhsUvGoHI+G6uHTLN+sOtQdKLsZSRWFEoCSSok/VAWfg7XCFKos1Yebk8WmKgqJV98fkYRBQAYYpjCmZDaxxVYVeRS2f2eDUpI1YwgXYaZkHtQvVDkiRQERHrOzBBQF7j6yTT5KQTzQz3Ko1g70hI+m3tQKmgPh6YHC6AARq5OggEpERnrNuVJAFRETUX1EV48pGGahPpMeiYQkWkKJqZIGdJW1taV1xRPrUGk9RYMxgRQ0FZiJNYM1wkTbo5FBwaYIUgGT6qIoAiQOekYBTqzySyXTWmtHQVr8PKh9dqVVsQORgaM0VyQzEVnlXNb8tT7Kz1ojignEat+hImbaqDMyYhzMSdHWpLfetRUE/pzhZxMgGSxOXJKZUqQLEKL4rF/AKkX5GUkP2PeYkRwJmZ/xAJmMiMpLj5ymwRCzKpWKefqYe1KgicxkZHiGZwIsGCUiwWRKEolMUVWFWqSZNU3VrNwayciYQJpqI5uIiqmoigaegdu3jAAFecw1C4rQI0M8OkkgmKz2RDXBFFZBLiSYmmlmAhK/Q5wP0lZxJhTVHWR6ufdBtRNrBv19AFrMrjzi6RGOKwQfBR4ItXJ0bRRP0YAc9UB9fxOFqTJNdWlW1IfnPFqG1yy+qXZFE7UDtH+Y5LM5BCFCkaO34WHOOuZHLoJAYKqf/X8+kHqFEAwGyKba1FD0ZCn6HchEahXBqiZHm4rqdvFoj0iISlaBysKeD9JpzRpOaw+hkCv1cjqf19lwfRqJuUnSTBYTU1sE3bQd2GLimI6wAGB8pvqjieSDkyemViN8ETPV3nplmGQOn4V1BCmJjMzMptqt2dK0mRwMkMdoQIpYpRUnMgNRDZVoEaQLkM5gPW/hi8mMCBCaahCVhHSRdZHzae3WTJ/Ufbameup96aYiXaQf5yuZoGgNQgpQ/yxE/4BlFEaB1rQ1LapMt1aT+qpDRWRwuDuTkcwIRrgqM5Uhrqp2cFTE8hg9JZlqTQQZiYNjwQOnJ4Jwn8xMStS/ZBZhqjWBkoouOgU2ZVlsWexZDoq29nbqrTcF0EWWI2KBB7fp96q4UODHFwdQyTr0x4xMe+s1cZJjrn/0TyADIshK2gB8+tzuBHrv1rqZaet4DFfIjAhSfYwHZMfhEwAhE+JeizZygAZSJR772ikZkgSaaF+kd7WGp42V2trb0q2pKqSLNBUAkgTyWJ/4Q41etacdyKPg6PnT52yitKYizeyzUwLQW68jXL1PqDMz3GdkRtYgGGREBFFoIOpzSzJjzlkg1iyakoiIupi7V/08gx4EYKZNrC8t9Rjjk2xd+mpv7+fnHXlQmuhq1sxUiqKa+e8qjCKJiJhYAeP1pzKUKFiocEQ+xpLlUwASbICaZs2eekTEHLPoC+meHk6BWiIeFUKRxLNC9gyfDBJR4BNkSGREJDI4PUZmiMDUuqViMmquEwmKwfL1y7n39iSDLt16ocgZOIAhfvaOUdQvHh1nRsDsaFcAgCJqailIZmSMMZiMCDNrvQKyqhW+VgW6Uq2JwRqJPXJGIKZYRjEYqnpTqXUczwwmUlMwMsecM8ITxVHOpEdOIk2YnOE5gwhnOhnWtS3b3L59fOdTilAALZPCoiwW4ItalysI798ETSDAmB4QbU2ongllZBa+5pm3vJNsra3L+vL6Zr2rKoEgk+kR7oEEiYCEaojMZGYywiOz2JykgL2bmhWhCYoU2SJuY+zDnVQxEaVIJpz05GTsc1BTFAFOMo1Y9PJ6uey72bOOvEeg6A0EHhV1jTUOZOTgbx75fgJaK38KFSG0ATSISpBjjrEPEMuy3IZbb2qtSleSw716p+NT8sjACHoyGGPOQovBBLK59d5Z+LcyRe4eH2PetzGjAoOJNYg6cw+/z30fe9BZ3FUzmkfzj0jr1tqzDCrHnAfAw35H5/3Akh4GRTFvgwORCTVtZq1GjbWPQI7k5hGZN8+PGTUVgWiQnjHdM9laW5bFzDAjd5+RwZw+tm3LDBVRUMAWtgIQSUgqHbhN/76N632bIe4OUbNOlRm+zfHjftvHRoGaqhlEU/UeMbud3t/laUnJM7VS4IH61L8r8YdtFDEBkinHmmU4abQQyQwPJkFHBuc+9n3PYAA2JiAjIgkeCYyZNVPaASk6lWckOee+bXcwm2pTaYLOBmtVos/IPXHdx7fb/nG735xzeh2b+qj2Oa77fd93Uem9t9atdZrefOLc5TLkWVOlJp84EUCBihJSyfoxpj8IjnFsyaLGeKYSzOGDEyM8MjNyjrnvMzNnpFmjqEd6ZhTXHZJ5cKNFtVUnlOlzDh8MbyJrt6XZopKANhezEHjK5vnjvn+73r9/3H+5bcMPDDQZXt0C6RF9Wc4qbT3Zso50T6fn337+ec4njZXaPj3SBTxw3MTBPK45x7+dX+LI1CKwYHLsM8PDb/fNo/hx4TPcc0yHaEIic8wYGRQ5Clw5GnNT7SIkp4+YrsKl6XldLr3l0kVV3Q0Iyh782Mf36+3XH9dv14+/3Xx6+JxzTvcZDDXrp3Xpy8vb1y9vX15f3iDy67dfIU5w23aPeJJBh1eWpooC8vsESVS0AJyqsYU1kqylsAz3sY2xj233eb3vGYWbSiQY3Id7hkeOGbv7iKjVm/zDrzDVbqYqETPdm8ppMY+J87k1XUBnhocH7x7Xbf9+vX77/vHbx49vW4zpcTBPKap9Wd++/PTly/vby/tpPTHy9nFNVjzVP7//w8u/3P/28zNo4e0gLzyMeBxx0QJEC/OFNiO9DpYIhdP9ut1++/h+u9+dWfu2zbpKE1FpYtDwyHQ2jcS+zzG9AJV4nAAVGGDVUFT4dDTD8JxOT7EEgBncndvI6xbfruO6wYd4aK1KB+iZ01V37n+7Xj/m6+Uk8H2/osmka5xXfe9teYI1UWWTftpUUXuYR8A76CJgweIJbRaq29i/3W7f7/fryJ02RpD2+vrWzxcRE9VlPZEydu9zeoReb7f5t/3+w91ba3mw8ETJzEhDa21dlmVp69LXpbfWRM2sqVgCam2BtRbuebvd3VPR124BBjIZgEbE9cfHNeJD5NvSepfWZb2clvN6fnsPasYz4PrDoH/w0MegqDqWg+yZEeGZw2N33zNuY35s232M3T1FrC+9nZf1DLEkmlomr/f7HH7fx7bt1+t127aqQPMTuCJUa8NZlmYv59Pby+XltJyXdlnb69rf315MzD1SbBJ7ZBMyfLX2cnm1dQnGfe63sY0amLhLMpGDrmzrcl76au2Ujs1H5rMMWoPdA1SXkqMolBNHTARGxLbve8T1fr/PuUc6AdVmjaoEmnUmtrFdb/fpAbVt339c73NO93APAHlMAMRMTbR0SZRzWZbL5fL+9vrl9eX1cno5LW+X9fW8fn19aWr7mDN5n74Nf1nX98tpPV1e//QPy+nsjB/b9brdd/d9n0g2sSZAejKa6tpP6+n1Y8Ttvs/xrKQ04xhRyMGH56e7kgzmzBwR9znvc1z3sbsnlGZFPJrDx5yK6Z5jzul+38fuPtzv++xLX9fTcu4g55hj7qd+upzPl9NpXZcmsNx768vS17U3hSKa8tTa22l9f3l5OZ88Ynh+bGPM+MefvmSGLcvp9c99PU3G27zc576PuY0yqCLDx8h06+3l5a1fXr/ffxs7n7ZL1x57FCkiSdbRUFOIeORwHz7vc2wx72NOIkUjOcfYho8x9hljDoRGECLarIhJ1paW6H05nc+9dxWJ6Td8fH1//+nL+5++/vT++tqE4rfMjJgAm8ki0oGG1AzMXdduzEVwMn0/r//0lz9dLpcZmXYOqGaKtKWpn9bpiWR6zH2ntd7MTsvy8hbaIyRDBc9Cm7YZEXkMhCAmGhEEqcyM6XMbY9v3+z49MpP79Pu2b/vY9j3LcNoBPa/LclptWbZ9zIxBbvtozdZ17b0vvSu5raevr69/ev/yl59+ent97QLMH2Ps27a5TxWupqtqAzWzCYwpTBVZm556e385r+t62/fvd8YciCl0FTZIa5Ipc04R2NL6svTzWftydSCFqU/brGl71aGfEkH6Ozb8KStwIJvFXI4QkdN6am2BWGtNRBR9Xc+vb2/r5RLg94+Pbx8fARaP2cy6WQO89dfz+f3lfFmXU29NUmFdujHdIOBScyYRYfq+T7VqzJtwUSyGfRs59hxEpCFFFSYJeM0Bm2o/9RLtakYzv+/HmZMnDT7ryONBNlYVNJWoCafi1KVs2/qQLz2St23MCIjVGlhA3N0nX19ef/r6tZ8Wmr69vb5fr3FszGdG+Jyc+2rahcpkzBwbmjSkqshiYYsCzXQpEaOImNPbWLAAgmRXfVmX7b51k1M3kRwxvcQ3QEwHuZg21XVdltM6AtlMSNNmCnvWJLl5UuWxOQkI2JsZD/bWIrL0fllPAaRIQqanJyAy/NEIbduY2Ztk7D4opj6npqugGN2B9KAXLT9m7Pdd0nLauqiGimhrNANgKt3EBOkR4lNH02OJrAkWa6e+zOHRTISmMtKdkRGLSm+lj3Es/0AxNa2hNaku9XkGfdD9gYQY6kUdg1tVEa0N4yAJ8cRMEuKkR973/dZ0HzOSMbfw0Vrvqq0ZDn2IHEhhWNN1sVPrTcUkNKekiKRpt6URCJ8lISNkBqdM3VHiS02tW3bj2vtdVUklTdBNDLZ0q4Xn3sxUgVrqBwFDqsDa85bp2kNhTVELHE1Vpde7hqiKWVO1LDg4c0TOJEUS6szF5NR0H77tY4wR6ZowaGTEjBkBsAEvl9OpL63m7Myl98vldD6dlnQzUzOSE3SfGRECLeURCXdnpGnvbVlTSl6KOdMjGaJYuvVlERUFmmqzGjAGRYxpwnL5x+7d39+go8gCSHlQOEtuQIUqUEgX9GaqOmfuPiVThbXlqkhtttppdF+ajCbTvTaR5oRLhqSJnk7raelL7wAErbe2rsuy9m52klNGxO9LNEh3PGhWTGUW3b7o4Q99QxVTEUoKK0qUX5vQAJUa3YuQ3WRt2k3a0wBmkpk8qEYHbg/woNOoqEHkoZbWC+YDApU80xQQWbStTWLtRb0LD1eJrkyqHsC+KXtrp9N6Pp/XpZspSZ0xyBqy12AVqsJUNsb8d06VmTV5Pa29nxaCHpFgb9rMJGFarIxUE5KS3lUWk7XZ+rSp5z4PLY+qcD73t0iIFZeIPvao5QTIYlJLlwks2kgmwSaiHUBG7vu+jxEGsh3PlFCVpfeXy/nlcj6dVlVlhHvM9OLHFiv/0dAcRzQiagmhr7K2ZSYm0e77SUR7VxNneniVukogwn1EwFPpUxnK7Kqvl/PL+fwsg8ahCqpA1toPkcGQqC1jrfV5/WxPpT223iBCIiODkQhRTRFJUeoUK04NINZb73Y5X17Ol/NpaaZMurOwfDA/A5yqJARxsHAz0z2m+5JsvbWWp76c+hLcrPF0OWnTiGzWuzVkxpwTsQcImulq1g0vl7Oez9+d+L+fYlA+WIapevBvICnMZERSUkSaqZmKHbuAR++vWsvEbCSNSBJOdMU02+bwONRYRPR0Ol3O51Pvpc8oSQObSClCJEULIZSS0CmlA5BwD3fPDAAm0lvrvatvYDaVdV0PiIzCFGNKdqbnCA0qYOXn4TGfhtgfi4JIEsz0FJOQ0qZJlQdfNKQJKtbWSrU1bf9GboTuvo3BoIPN1Hqz1ltrUHk5n5fWkczpjJBMEEa0pgjOKHbFA9j+nWxfDNMDj1VRM1ozVUmG+1iyt94PeiMhqhQZxQ7aB2gqypjXHz9u16ep4hBJ6pFLJUl5aBmSFJXS5yKQyPZg7BSTTJuZSOk6gFlO10TS1LqJGVqr5YwiippI703MEOFjesQnt0kSBANx6GYc2woHzbHESU1TkwoIM2LMoV5PpyYEKAQcTBCmqZopKZKUfY59f5YG84go9qw+NuJI1OiXrBUDlUCUogMka/SGFEpIQLR4hsd6O1o3USVEUFRsEYWqA8gi5lHplDTsSI6IncKHIC2oKilZ9EcTBWREFkNUAGWaJNN9TBPLHhRKEzDx2HMmWIeIkARg2nrTp5VNI+m1NykUcEha6cxChFRCKJLHyU4wELBPNiOa6rG1EEpRgJ/c1oMgexxdKRLzQzLCRCE60xCC4ZFkrSKQ4swE9ZjACKCZx/7ddEc+iLuR7uktzJKRGZ4MPvIlBKKaDALarC/9SQY9NnkhmZx0QEqVhWowlRqiU0j9nDIeMbcotVq1gAjzc5KiNex/LHLVNP9gnGVJ08accwwf4bex73PG77uMRfpWFcGnuBEp0N6XOVOlqbZav8mge7ZWxnXQeTBd+IlOROaMeNYEBG13Dw9liSSIA0Qe/GPYoffVKhMo8JB8kFoURvmdHtILMDk2m47sXtWAVuJGFZiZHGPe7vfb7f5jbNu+HYwnSBXCptZEQlFHpFZCtBglvffel7b0tjzY9XA/FF/wYK9n0fMAiiaxjXHf9ycZdHpGUEF5KDBSxA5+E/nggzO1tmDUDnAqa4nmELS03vQAUx7LgGVYlWIs5OcUIiLH8Ovt/vHx8dv9GswKugQQaWqpSdEEmoqIZWa4R0RthZhqa920RZRQec45k0GkkB6ZiXAyGUFVg9p0zqcN6SrY8CAtZ2SYgigN+Fp7K4xEwBSKkSyayYMDUkvy0uxzcoqHLFktytSBLjpnRGxjv9632+1+vd23fWu9995ErZJj7fjU6pSY9kWZkeHMCkUQhaqo2PA9DuItyVRJID9nqxHiM2vZInhIzj7DoDNTRFnqs5ngQWYlUVJ3Wnx7Uh9iAYfqw0G3tULYPvUxWOR6kERCin9bKkDD5/V2+7jeb9v24+P2/XYXwWr9vJzUehBFVhImPJJ5CISi4mOqVkSBaalnwz1Ep9IgoBzHqRbuH9GAEUiq2rOSEkmP0BQrLb/fV46PdcDSInnMPsQzNWr6dLSf+PyRg/l57DzwELGppa5IxrbtP6637x/X63b/uN+3Md9Op9WWRRezXovlEUH3wAzIkc5ARmRmEzCDGcXkV7OI4ByGpqooryhpp0QNPrKqalG1rg/Jg7+vQUeEh9c2bNMCwpCAkHrI7lbhd6iugF5tCcxMq91GJgtRZnU4BwpYiopkYE735H0ft22/btvHfbuPmRDVZmiSioSZmbZEOo4lXpVjHTwZEdNdpu8eE5LFNZtz95mLQqRF4HHMMoJBJCyTRbYXNVHF319/vc2kNDOoZHzqISuJJJQdknK0pZWoUrM04hUSSCRCQlUyDQ8E8JO2l8FIRuScMSM/brdvH9frtt3H3MPX04liQQkKxFRMWoNEhiYlS4wrqSZqFjklJDPIiPSR0zP2McXCuhkJqYiRc6ZHzpAZ8IAHk5SnDekOCFTyseheXUZt+YGkz4mHGKi7C4DWRMJUBZGRCohKZlS5lI9NEJIMBmXO6cHpcdv3j+22DfdMqqTIJLaI8KmgeOicRGZEIgmWxiEDFv7jvi3h0+c+x5g+I4bP4dPQIiNpOLj63OYMyPAYkTPk2HpKV5EnACRtRj4SDgVqD5i5gM5gSlWXAI6tSwaZmT6DSoPWdnUcdMeSpSymPCOZgI+Y4ds+r/f7fd89U/uy2JLJPYM+JSNrR7x4QExBmqAJTRCq4hPbtmTLzDF9c98jPu632/2+LKuaZVI/F7hF9jkCAlt8+jbu9/2W+aQZSKsVbeHjIopDOr54V6xNWJbmTOkEQDLhMxluJQlqDYCa+UPAqiDBjIwjjGIf4+N2//FxvW9bX9bz5WK9//bt+23sd/fhfr3ftzEo2lpTxdJt7W0xXZuds+2ZG7nOhcg5fXh87P7z9+9jzhcCZktkM1ORZNzHdHIC13G/T5cmr+/n+4/tOct0bUZGLaCjFNAeK8jHocu6CCRRrVH1RbUJnCnaaCIJkRhRBi1Q4BANASK4j3HftuvtPny01t/eXr/+9KdA/vrLb98+rjPzvu+//vb952+/JXRZlr6083k9r8vL6fT+cnnN0zL9klhnyKHyHr98XH/+8UMgy3r2oCBImOqIOTInOYIOSpP1df3pbfl5+5fn4CPHkX84n5SGeZG2a7eD8lk5sRpNo1JBKkoiKyQT0IjMSEIFoJfcJxDu1/v9dr3e7zshl5fL2/v768vLPsfSzef89uPjum3Xfffgx3aL601VrMl5Xb++v+2ZE3Ja+kbtY1YnHOTPPz4+9nFe1oQGRbPm4PREAJM5mSnYY367fcf6Skw85dA3ALWMkJBSAT8YeGoPOrMSStTpZargIWhRYlPwGuNlDSoLlyyJWkhlJB/hgVz66fX19e3ysrS+LMt/+g//cU7e77ubv/z57a9/XX69fuw+Z+Q+9m27/+uvv4Vqqp7m2oYr6e6ZFJURQ5a1nc40y9IULd1RwJkO7jlHMoXaBZ2X1+U5u1/NI1WtVtJCqRATEDWhE5BQoQBHqSwAAgUJH/pYVS17aTswC7vy9IhU1el+37Y5p6ldLufL5dz7Aoayvb28/vM//YdFl++3D7a2J3VZZFlS5b5tP//886/ffvv+cYfo6XxuZhlHZ6lNXy6nl/cvL6ezivEo4OmMFEaEI4PhoPZ27qeN+PNfvlal/Hc36Mzc3E9qao9rtADFobDESB63PxyK1oAkRZK1YqhVIxEuoBw3/RDwjJKx3ca+bRvJ0+X09vb2cjkvvdW4pam+XS7z/R3kAJScmffMmGHa3r989eT379/+9utvy+1WkK1aUxEzW8+n1/f3l+XM6fAgSpXLaXBw9+k1hxBGzuu2//mvf+3LMybJDUR4ukFE7NHeQOShjJHHlUokmSJqBARxgPQHlkdQuxYhIRPJnOFzekbu93tEnk+nL6/v7y+vp2XtarN2i8AMh1C7sUp2A5mqUGkAzufzj+v1tt83JkoUl2aCk52SEDFdmqfPiKgaT0kVp6bo7uNG35tOgdjw/FB7Sgydmbe5q3ahKFXzQD3qOB+h/iFgIZks2U4ARIjUvX0ke4wZrtoeoFXe79vcd5+zaX85vby/vr+czqaFWovndPdt3+77tsfYMnbmHmNEEFKyoefT6Xy5hHCPUfJxdc8YhSS3OZbZ66OOqs4ETLr7CBc7Sv3XL28/vV6+3a58CoLXAM7MrPFG5jzuCTiay4Liarm7tEDIQy1RPmWvAAAURkCYQY7p277f7pu7q8jr5eXl7X05nbUvEPFkQjy5Db9t2227f9yuG2Kqjjn26RBtja310+n0/v5qi133O8G6ZbAubIuIfd9Hb0aSLswinTgoZhKR6WOfv92v2PbxrzGI6c+Qw2oeVDnk5txdSDOrmUf7hDcfD5EKkwfE9IkZkwwxT9bdUmPGffjdQ1KWZTm9vp1e32xZUzQzx5wk933exriPcRvb5vsAhmLGjMd1GKJoqm+vL33t61w9ShMjkWxqnjl87mNvAoQb0M3ElIWRgNMDkMvlJdfTt19//fqPfzmdfgFuf3+DZo4aeAlKOkRJU4UB+lDDKPCdR293jIh+h+kIwBNO8eT0vA/fhs+U1szWcztdXPQ6huyjPMsjMtMjdqYrUiXBmZPCvljvq2kDmemn3tRkXfvwOef06UlvagQjYp/DQSXXEn+qBSsRqGprvS0wi3XJX76DHXhK2QRgrzsNBGKWLEXzasetOlEBUDje41aPGoHI45IuEfFkUCIxIu9j7l5Xm6z9fKLp7r7tO8m5Dw8vkczM3HwOpCsmGWTrTWt8xXT3DJpIh5gYkJkzPCVqIsjpvm1UcDFtpgdDCkLRFA0axaytp8vb169Tirz/HIOWUs+x0lkjYQgeV++U+HmV+Mdgs1z0IbFWKkBBBjEjtjGGO1T72pfzqS2LM+9jT3cmx76ramRAZPq8j33LGGSN+0nMMRh7resL1UXMmpCWUIc4lZIjuMo+Z7gbkkszE+1GgiIhMoO3bdwTCLmsOK1vm+dzLvdsAIZHFE+D8KxVLgrVpa7HVCAfZ7+6p6M7PUjkxx0odI8xxhgjM9fTup7WvjQKtrnXxdoCzPAuPcDM3N139+mMRCDnDErMOX1G03Za1t5s7UuzxSOQs7clA5l5v++UCXCCQs6pJPu6tr4EMT234bf7+LbN+WPoLRzq1OnPaj2Hx3CnakIpUIixrktjKYsxJVVNPkXDj0uURCRFApEeGek+3AcZKljW3lojOH3sW8Gm0lor0k5pZYwxZzBTwrn73O47TCv8mMCsXc6v5/NFRPcxR1CM/WS7+9xGTE+Bgem+kyC/fP3alpPPuc/pAW1rW/o2c7/7deQIzPkUMUEA1/t267q0tvQGNBMlHgJCydqlP0SuqzqBotTDBVSJECemj4gBSbW671PmHAxB0udMz2ZtWRZVm9O3fUyvvSfJFJ8ce8Qk8mClQswTTuweAG/b/u3jVljqNmdmkL5vdxF007Xb8Lxv4/Ju9ExYSqOqNOSY19sIWU7n196fIb7eAFy3/bZY9GS1H8pFH/DNIeiAkqyKuhM2XWl2TDkFIiXGHGRkALTeknHfR+t927bwaNoIlaBkzozazRFVFfPMMekBoGUWIKsz4Pd9n0lCRW+3+/ePj22MSaagLx1z8znW3uy0eEhkBvBxvae2oAznPmKGJgxiQRWX52X56TE9VNQsLEND+6J5UDuL+8A4LqjSx+sqVA+PKZykwHH8JT0GCYhn7mOObYp6t7SRqk2b7Y5tHp1ZzLjN2HefPp2pNd/KPMS1POgxxtzHHOEUkaXZmAumCqy1Zq3m1pEY7mitLt+JhAdIExUJTWpS/j+M8f+XQceMGWyNIwJjquj0QGvHpLhKzyAyqprSuhOMx+JIElBJVSccJGS6h0fri2/z+4/77XY37acTeyfhEP1xv9/ue5AJXu/XuijoEGs/NODApJIxI8ZIz0yIiS2tQX3Odm6X03o+n5ZmQEJkeqyiY8bwSAhhQXqSbFpivU+Z0zUApSoDMCLDj1t3SFQdipIMFEhNd2u1oPZYSK9bGkSpVqpWgZyeM2Khbtv+cb3dr5vp3O9Oyn0bM7nNuXsQQsOWu88QQB4KuglkJJLndY1txEwjTt1eLufL2+t6Pm1z9JOdT701E6JE2dwjEvd930dJMiOSXqIeZjy0KZ5i0BGcHgIVUWhs+4DWILkvZk1hgClMJCKkGCUHogvPECgEMIO1GL67u2dEgjM917bq2RBwz7GN++2+l1odQYiDGybAbpJg+idIwLrZD86Tytvp/PX97f3L++v7W1uXYOzcg35IGYJmqk2v99t9j+GYIR6cnpmamsBDAvU5Bo1jUS4jU9McMYfX0ixaZ6tbdVjDz7p0ZWaEVyRIVRaDHGIUrXt1BcrI87J+Ob8pNT2vH/dxnl9e/T7nNuc2fJ9zxOwi59P6ejkDxRSHmCYYHpzeX+V1Wb+8vL6cT5eX83JeApwpc+x1GVvdSLSua4RfP7aRcF08dXjMoOiK2ibB72y1v7tBS/1nRqqGmgV0DC9CokJUmlo1mmKlych8SMuWvJNk5mAGE8clMinQJvp+eXl/eT21E4PbfRdRiu3u32+37x8f1/t9n4Pwl/Pl5fLSrEGUKglsc9zud4OcWrss66JqNUsQqgEeqmy9AYzwktedY0z3PUgTynIMDFuJAHhRyZ9k0Dh0B3KKtJaejJLjZkVMCkyYhl4Y7QEj10wESqRn7mPMCGYqxCME2ft6WfrLsp6WddGel0tvi7UlVT+27cftdt/3fd/hs6n1vpg1iFBlZN7Gfr9svfXzsmhmzhE+HeExxIxy8HxBjVCS+75Pd/fcdk9DGnx6uEjLLM7ap7rfEww6PTzDUJva7RAay+NuRwXBpqDhMbbn0WsCMNUEI2PMsY9ZY6j02Vq/nE9vL2+vl4sRktlKqBp5Xtbz6fTl/W34jDl1n+6HynKSzhyZ76dT6heIqGBs9w1BBOcMj97NoF1bIKkQTXffNt8iAk2WVW09v/70f/yXf5Tl8u1j+2//8+e2nO/buP32NA/NmBEhEpk6XaxlflKOpZiCTSXJxpIkOFS5zSwYSPF0d9/3ncxu2s3eXi9f3i7rApEBlHxF5t17XxDnvqyvrUu31O6ErAKg7mGPTCdaay7cw+9j+2Eyazp0iAkLnZ+hJSkBddJTpPfl9JK6tNPp65/+NFJ//X7/z//8z9D+//63/46nxVAXHSKSaRCJoCiThozwdKSCiqWb+FzYeo0ieBDw3Gd59gifPplp0pfWlt5bs+OK+EOONXcf29hv96335XS+nE4nU2tLE0i1DZEpKqdlnZFmFj6G+3CfGV5cNpNgzvCQrL8kKSq1r9asLeuJbbVlKSm8Hx8//vLXv377cXWfdanjMwxqZn1ZkamZAdz3rUT75xSfylwVzGwlgVvL4Hzc8eXTM1lKq3WnBURa77Wh4xHIrD2bcq+ImJ7bnPc5l21rZl27mtUFqiSttZV53/dAOnjdbz/uP277tsdMoC2LNAGUwXAGahCP4XMmVFRa7+eL9NWTfT1Zb2OMX3755cfHD3laUhoe25jCLMdT97X13iwFHtzHFKGHFZOJhOnRQLVEPNSXPeKIqa31ZVHVGu0CSESRKRKkllC6jxG3udcUcFmWcHcPU1vWtfk+w29jv+/7j/t1D4cKVGmSKiPDyRG+z30fc0RumfvM0B6CkenTkSPtri1Pl/Ov3779uH6MsU9/hkBjA+CR0wOgiYgaOZ0psAakYGTk3XeVtTcSHtmaFXYHUYGRmYmgQLT11pe1r4u2WnQqHYhjmeTYuBMk6Hlcw8JMnduYc993EOXdntzmvs8ZYF/XZT1pt1pkighn7D62fd/dE6badJHh/OW3H/eff0wqrIstH7f95f2rSKs1nedINzUAB6WJGZAuptZQshgJPLghGiQIVaoEgBrWiy2LpYgXCUeg1nrvbeml/MTHbXdCRkYmCjhnAamlGSCy+djnuG236V7kXy9xbaCvaz8tfe1iZqYQ7GOnzyRLPa5uwqAYBY7MAygRgMtyysjpW+2LPMOcwP8CdBbcY3UBMa0AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<PIL.Image.Image image mode=RGB size=112x112 at 0x7FCAB5CB4438>"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "Image.fromarray(dst_img[...,::-1])"
   ]
  }
 ],
 "metadata": {
  "hide_input": false,
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}