Spaces:
Running
Running
File size: 7,435 Bytes
fc96fb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# SPDX-FileCopyrightText: 2025 Idiap Research Institute
# SPDX-FileContributor: Anjith George
# SPDX-License-Identifier: BSD-3-Clause
import cv2
import numpy as np
from numpy.linalg import inv, norm, lstsq, matrix_rank
import mediapipe as mp
# =============================================================================
# Constants
# =============================================================================
REFERENCE_FACIAL_POINTS = np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041]
], dtype=np.float32)
# =============================================================================
# Landmark Extraction
# =============================================================================
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(
static_image_mode=True,
refine_landmarks=True,
min_detection_confidence=0.5,
)
# =============================================================================
# Custom Exceptions
# =============================================================================
class MatlabCp2tormException(Exception):
def __str__(self):
return f"In File {__file__}: {super().__str__()}"
class FaceWarpException(Exception):
def __str__(self):
return f"In File {__file__}: {super().__str__()}"
# =============================================================================
# Similarity Transform Utilities
# =============================================================================
def tformfwd(trans: np.ndarray, uv: np.ndarray) -> np.ndarray:
"""Apply forward affine transform."""
uv_h = np.hstack((uv, np.ones((uv.shape[0], 1))))
xy = uv_h @ trans
return xy[:, :-1]
def tforminv(trans: np.ndarray, uv: np.ndarray) -> np.ndarray:
"""Apply inverse affine transform."""
return tformfwd(inv(trans), uv)
def findNonreflectiveSimilarity(uv: np.ndarray, xy: np.ndarray, options: dict = None):
"""Find non-reflective similarity transform between uv and xy."""
K = options.get('K', 2) if options else 2
M = xy.shape[0]
x, y = xy[:, 0:1], xy[:, 1:2]
u, v = uv[:, 0:1], uv[:, 1:2]
X = np.vstack((
np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))),
np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
))
U = np.vstack((u, v))
if matrix_rank(X) >= 2 * K:
r, _, _, _ = lstsq(X, U, rcond=None)
else:
raise ValueError("cp2tform:twoUniquePointsReq")
sc, ss, tx, ty = r.flatten()
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
T = inv(Tinv)
T[:, 2] = [0, 0, 1]
return T, Tinv
def findSimilarity(uv: np.ndarray, xy: np.ndarray, options: dict = None):
"""Find similarity transform with optional reflection."""
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
xyR = xy.copy()
xyR[:, 0] *= -1
trans2r, _ = findNonreflectiveSimilarity(uv, xyR, options)
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
trans2 = trans2r @ TreflectY
norm1 = norm(tformfwd(trans1, uv) - xy)
norm2 = norm(tformfwd(trans2, uv) - xy)
return (trans1, trans1_inv) if norm1 <= norm2 else (trans2, inv(trans2))
def get_similarity_transform(src_pts, dst_pts, reflective=True):
"""Get similarity transform between source and destination points."""
return findSimilarity(src_pts, dst_pts) if reflective else findNonreflectiveSimilarity(src_pts, dst_pts)
def cvt_tform_mat_for_cv2(trans: np.ndarray) -> np.ndarray:
"""Convert transformation matrix to OpenCV-compatible format."""
return trans[:, :2].T
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True) -> np.ndarray:
"""Get cv2-compatible affine transform matrix."""
trans, _ = get_similarity_transform(src_pts, dst_pts, reflective)
return cvt_tform_mat_for_cv2(trans)
# =============================================================================
# Face Warping
# =============================================================================
def warp_and_crop_face(src_img, facial_pts, reference_pts=REFERENCE_FACIAL_POINTS, crop_size=(112, 112), scale=1):
"""Warp and crop face using similarity transform."""
ref_pts = reference_pts * scale
ref_pts += np.mean(reference_pts, axis=0) - np.mean(ref_pts, axis=0)
src_pts = np.array(facial_pts, dtype=np.float32)
if src_pts.shape != ref_pts.shape:
raise FaceWarpException("facial_pts and reference_pts must have the same shape")
tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
return cv2.warpAffine(src_img, tfm, crop_size)
def extract_landmarks(image) -> dict:
"""Extract key facial landmarks using MediaPipe."""
img_h, img_w, _ = image.shape
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_rgb.flags.writeable = False
results = face_mesh.process(image_rgb)
fr_landmarks = {}
if results.multi_face_landmarks:
key_mapping = {
1: 'nose',
287: 'mouthright',
57: 'mouthleft',
362: 'righteye_left',
263: 'righteye_right',
33: 'lefteye_left',
243: 'lefteye_right'
}
for face_landmarks in results.multi_face_landmarks:
for idx, lm in enumerate(face_landmarks.landmark):
if idx in key_mapping:
x, y = int(lm.x * img_w), int(lm.y * img_h)
fr_landmarks[key_mapping[idx]] = (x, y)
if 'righteye_left' in fr_landmarks and 'righteye_right' in fr_landmarks:
fr_landmarks['reye'] = (
(fr_landmarks['righteye_left'][0] + fr_landmarks['righteye_right'][0]) // 2,
(fr_landmarks['righteye_left'][1] + fr_landmarks['righteye_right'][1]) // 2
)
if 'lefteye_left' in fr_landmarks and 'lefteye_right' in fr_landmarks:
fr_landmarks['leye'] = (
(fr_landmarks['lefteye_left'][0] + fr_landmarks['lefteye_right'][0]) // 2,
(fr_landmarks['lefteye_left'][1] + fr_landmarks['lefteye_right'][1]) // 2
)
for key in ['righteye_left', 'righteye_right', 'lefteye_left', 'lefteye_right']:
fr_landmarks.pop(key, None)
return fr_landmarks
# =============================================================================
# Face Alignment Pipeline
# =============================================================================
def align_face(frame, annotations: dict, scale=1, convention="yx"):
"""Align face based on 5 landmarks."""
required_landmarks = ["reye", "leye", "nose", "mouthright", "mouthleft"]
if not set(required_landmarks).issubset(annotations):
raise ValueError("Annotations must contain required landmarks.")
facial5points = [
annotations[lm][::-1] if convention == "yx" else annotations[lm]
for lm in required_landmarks
]
return warp_and_crop_face(frame, facial5points, scale=scale)
def align_crop(image):
"""Extract and align face crop from an image."""
landmarks = extract_landmarks(image)
if not landmarks:
return None
try:
crop_img = align_face(image, landmarks, scale=1, convention="xy")
except Exception as e:
print(f"Error during face alignment: {e}")
return None
return crop_img
|