File size: 21,568 Bytes
26187fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import cv2
import datetime
import imutils
import numpy as np
from centroidtracker import CentroidTracker
import pandas as pd 
import torch 
import streamlit as st
import mediapipe as mp
import cv2 as cv
import numpy as np
import tempfile
import time
from PIL import Image
import pandas as pd
import torch
import base64
import streamlit.components.v1 as components
import csv
import pickle
from pathlib import Path
import streamlit_authenticator as stauth
import os
import csv
#  x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x

                                
import streamlit as st
import pandas as pd
import hashlib
import sqlite3 
#

import pickle
from pathlib import Path
import streamlit_authenticator as stauth
# print("Done !!!")

data = ["student Count",'Date','Id','Mobile','Watch']
with open('final.csv', 'w') as file:
    writer = csv.writer(file)
    writer.writerow(data)
    

l1 = []
l2 = []
if st.button('signup'):
    
    
    usernames = st.text_input('Username')
    pwd = st.text_input('Password') 
    l1.append(usernames)
    l2.append(pwd)

    names = ["dmin", "ser"]
    if st.button("signupsss"):
        username =l1

        password =l2

        hashed_passwords =stauth.Hasher(password).generate()

        file_path = Path(__file__).parent / "hashed_pw.pkl"

        with file_path.open("wb") as file:
            pickle.dump(hashed_passwords, file)
            
    
elif st.button('Logins'):
    names = ['dmin', 'ser']

    username =l1

    file_path = Path(__file__).parent / 'hashed_pw.pkl'

    with file_path.open('rb') as file:
        hashed_passwords = pickle.load(file)

    authenticator = stauth.Authenticate(names,username,hashed_passwords,'Cheating Detection','abcdefg',cookie_expiry_days=180)

    name,authentication_status,username= authenticator.login('Login','main')


    if authentication_status == False:
        st.error('Username/Password is incorrect')
        
    if authentication_status == None:
        st.error('Please enter a username and password')
        
    if authentication_status:
        date_time = time.strftime("%b %d %Y %-I:%M %p")
        date = date_time.split()
        dates = date[0:3]
        times = date[3:5]
        # x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x

        def non_max_suppression_fast(boxes, overlapThresh):
            try:
                if len(boxes) == 0:
                    return []

                if boxes.dtype.kind == "i":
                    boxes = boxes.astype("float")

                pick = []

                x1 = boxes[:, 0]
                y1 = boxes[:, 1]
                x2 = boxes[:, 2]
                y2 = boxes[:, 3]

                area = (x2 - x1 + 1) * (y2 - y1 + 1)
                idxs = np.argsort(y2)

                while len(idxs) > 0:
                    last = len(idxs) - 1
                    i = idxs[last]
                    pick.append(i)

                    xx1 = np.maximum(x1[i], x1[idxs[:last]])
                    yy1 = np.maximum(y1[i], y1[idxs[:last]])
                    xx2 = np.minimum(x2[i], x2[idxs[:last]])
                    yy2 = np.minimum(y2[i], y2[idxs[:last]])

                    w = np.maximum(0, xx2 - xx1 + 1)
                    h = np.maximum(0, yy2 - yy1 + 1)

                    overlap = (w * h) / area[idxs[:last]]

                    idxs = np.delete(idxs, np.concatenate(([last],
                                                        np.where(overlap > overlapThresh)[0])))

                return boxes[pick].astype("int")
            except Exception as e:
                print("Exception occurred in non_max_suppression : {}".format(e))


        protopath = "MobileNetSSD_deploy.prototxt"
        modelpath = "MobileNetSSD_deploy.caffemodel"
        detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
        # Only enable it if you are using OpenVino environment
        # detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
        # detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)


        CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
                "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
                "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
                "sofa", "train", "tvmonitor"]

        tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)

        st.markdown(
            """
            <style>
            [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
                width: 350px
            }
            [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
                width: 350px
                margin-left: -350px
            }
            </style>
            """,
            unsafe_allow_html=True,
        )
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)


        # Resize Images to fit Container
        @st.cache()
        # Get Image Dimensions
        def image_resize(image, width=None, height=None, inter=cv.INTER_AREA):
            dim = None
            (h,w) = image.shape[:2]

            if width is None and height is None:
                return image

            if width is None:
                r = width/float(w)
                dim = (int(w*r),height)

            else:
                r = width/float(w)
                dim = width, int(h*r)

            # Resize image
            resized = cv.resize(image,dim,interpolation=inter)

            return resized
                
        # About Page
        authenticator.logout('Logout')
        app_mode = st.sidebar.selectbox(
                        'App Mode',
                        ['About','Application']
                        )
        if app_mode == 'About':
            st.title('About Product And Team')
            st.markdown('''
                        Imran Bhai Project
            ''')
            st.markdown(
                """
                <style>
                [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
                    width: 350px
                }
                [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
                    width: 350px
                    margin-left: -350px
                }
                </style>
                """,
                unsafe_allow_html=True,
            )

            


        elif app_mode == 'Application':
            
            st.set_option('deprecation.showfileUploaderEncoding', False)

            use_webcam = st.button('Use Webcam')
            # record = st.sidebar.checkbox("Record Video")

            # if record:
            #     st.checkbox('Recording', True)

            # drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)

            # st.sidebar.markdown('---')

            # ## Add Sidebar and Window style
            # st.markdown(
            #     """
            #     <style>
            #     [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
            #         width: 350px
            #     }
            #     [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
            #         width: 350px
            #         margin-left: -350px
            #     }
            #     </style>
            #     """,
            #     unsafe_allow_html=True,
            # )

            # max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1)
            # st.sidebar.markdown('---')
            # detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5)
            # tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5)
            # st.sidebar.markdown('---')

            ## Get Video
            stframe = st.empty()
            video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v'])
            temp_file = tempfile.NamedTemporaryFile(delete=False)

            
            if not video_file_buffer:
                if use_webcam:
                    video = cv.VideoCapture(0)
                else:
                    try:
                        video = cv.VideoCapture(1)
                        temp_file.name = video
                    except:
                        pass
            else:
                temp_file.write(video_file_buffer.read())
                video = cv.VideoCapture(temp_file.name)

            width = int(video.get(cv.CAP_PROP_FRAME_WIDTH))
            height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT))
            fps_input = int(video.get(cv.CAP_PROP_FPS))

            ## Recording
            codec = cv.VideoWriter_fourcc('a','v','c','1')
            out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height))

            st.sidebar.text('Input Video')
            # st.sidebar.video(temp_file.name)

            fps = 0
            i = 0

            drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)

            kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6)

            with kpil:
                st.markdown('**Frame Rate**')
                kpil_text = st.markdown('0')

            with kpil2:
                st.markdown('**detection ID**')
                kpil2_text = st.markdown('0')

            with kpil3:
                st.markdown('**Mobile**')
                kpil3_text = st.markdown('0')
            with kpil4:
                st.markdown('**Watch**')
                kpil4_text = st.markdown('0')
            with kpil5:
                st.markdown('**Count**')
                kpil5_text = st.markdown('0')
            with kpil6:
                st.markdown('**Img Res**')
                kpil6_text = st.markdown('0')
            


            st.markdown('<hr/>', unsafe_allow_html=True)
            # try:
            def main():
                db = {}
                
                # cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4')
                path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite'
                #count=0
                custom = 'yolov5s'

                model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True)

                b=model.names[0] = 'person'
                mobile = model.names[67] = 'cell phone'
                watch = model.names[75] = 'clock'

                fps_start_time = datetime.datetime.now()
                fps = 0
                size=416

                count=0
                counter=0


                color=(0,0,255)

                cy1=250
                offset=6


                pt1 = (120, 100)
                pt2 = (980, 1150)
                color = (0, 255, 0)

                pt3 = (283, 103)
                pt4 = (1500, 1150)
                
                cy2 = 500
                color = (0, 255, 0)
                total_frames = 0
                prevTime = 0
                cur_frame = 0
                count=0
                counter=0
                fps_start_time = datetime.datetime.now()
                fps = 0
                total_frames = 0
                lpc_count = 0
                opc_count = 0
                object_id_list = []
                # success = True
                if st.button("Detect"):
                    try:
                        while video.isOpened():
                            
                            ret, frame = video.read()
                            frame = imutils.resize(frame, width=600)
                            total_frames = total_frames + 1

                            (H, W) = frame.shape[:2]

                            blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)

                            detector.setInput(blob)
                            person_detections = detector.forward()
                            rects = []
                            for i in np.arange(0, person_detections.shape[2]):
                                confidence = person_detections[0, 0, i, 2]
                                if confidence > 0.5:
                                    idx = int(person_detections[0, 0, i, 1])

                                    if CLASSES[idx] != "person":
                                        continue

                                    person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
                                    (startX, startY, endX, endY) = person_box.astype("int")
                                    rects.append(person_box)

                            boundingboxes = np.array(rects)
                            boundingboxes = boundingboxes.astype(int)
                            rects = non_max_suppression_fast(boundingboxes, 0.3)

                            objects = tracker.update(rects)
                            for (objectId, bbox) in objects.items():
                                x1, y1, x2, y2 = bbox
                                x1 = int(x1)
                                y1 = int(y1)
                                x2 = int(x2)
                                y2 = int(y2)

                                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
                                text = "ID: {}".format(objectId)
                                # print(text)
                                cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
                                if objectId not in object_id_list:
                                    object_id_list.append(objectId)
                            fps_end_time = datetime.datetime.now()
                            time_diff = fps_end_time - fps_start_time
                            if time_diff.seconds == 0:
                                fps = 0.0
                            else:
                                fps = (total_frames / time_diff.seconds)

                            fps_text = "FPS: {:.2f}".format(fps)

                            cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
                            lpc_count = len(objects)
                            opc_count = len(object_id_list)

                            lpc_txt = "LPC: {}".format(lpc_count)
                            opc_txt = "OPC: {}".format(opc_count)
                            
                            count += 1
                            if count % 4 != 0:
                                continue
                            # frame=cv.resize(frame, (600,500))
                            # cv2.line(frame, pt1, pt2,color,2)
                            # cv2.line(frame, pt3, pt4,color,2)
                            results = model(frame,size)
                            components = results.pandas().xyxy[0]
                            for index, row in results.pandas().xyxy[0].iterrows():
                                x1 = int(row['xmin'])
                                y1 = int(row['ymin'])
                                x2 = int(row['xmax'])
                                y2 = int(row['ymax'])
                                confidence  = (row['confidence'])
                                obj = (row['class'])

                                
                                # min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj}
                                # if lpc_txt is not None:
                                # 	try:
                                # 		db["student Count"] = [lpc_txt]
                                # 	except:
                                # 		db["student Count"] = ['N/A']
                                if obj == 0:
                                    cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
                                    rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
                                    rectcenter = int(rectx1),int(recty1)
                                    cx = rectcenter[0]
                                    cy = rectcenter[1]
                                    cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
                                    cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
                                    
                                    db["student Count"] = [lpc_txt]
                                    db['Date'] = [date_time]
                                    db['id'] = ['N/A']
                                    db['Mobile']=['N/A']
                                    db['Watch'] = ['N/A']
                                    if cy<(cy1+offset) and cy>(cy1-offset):
                                        DB = []
                                        counter+=1
                                        DB.append(counter)

                                        ff = DB[-1]
                                        fx = str(ff)
                                        # cv2.line(frame, pt1, pt2,(0, 0, 255),2)
                                        # if cy<(cy2+offset) and cy>(cy2-offset):

                                        # cv2.line(frame, pt3, pt4,(0, 0, 255),2)
                                        font = cv2.FONT_HERSHEY_TRIPLEX
                                        cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4)
                                        cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4)
                                        kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True)
                                        
                                        
                                        db['id'] = [text]
                                        
                                            
                                        
                                if obj == 67:
                                    cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
                                    rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
                                    rectcenter = int(rectx1),int(recty1)
                                    cx = rectcenter[0]
                                    cy = rectcenter[1]
                                    cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
                                    cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
                                    cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
                                    kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True)
                                    
                                    db['Mobile']=mobile+' '+text
                                    
                                        
                                    
                                if obj == 75:
                                    cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
                                    rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
                                    rectcenter = int(rectx1),int(recty1)
                                    cx = rectcenter[0]
                                    cy = rectcenter[1]
                                    cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
                                    cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
                                    cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
                                    kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True)
                                    
                                    
                                    db['Watch']=watch
                                
                                    
                            
                            kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True)
                            kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True)
                            kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>",
                                            unsafe_allow_html=True)
                            
            
                            frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8)
                            frame = image_resize(image=frame, width=640)
                            stframe.image(frame,channels='BGR', use_column_width=True)
                            df = pd.DataFrame(db)
                            df.to_csv('final.csv',mode='a',header=False,index=False)
                    except:
                        pass
                    with open('final.csv') as f:
                        st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv')
                        
                    os.remove("final.csv")
            main()