Spaces:
Runtime error
Runtime error
File size: 4,206 Bytes
56de2d4 b8466ce 10696ac 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce 56de2d4 b8466ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
from decord import VideoReader, cpu
import cv2
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def read_video_decord(file_path, indices):
vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
video = vr.get_batch(indices).asnumpy()
return video
def read_video_opencv(file_path, indices):
vidcap = cv2.VideoCapture(file_path)
frames = []
for idx in indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)
success, image = vidcap.read()
if success:
# Convert BGR to RGB
frames.append(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
return np.array(frames)
def concatenate_frames(frames, clip_len):
layout = {
32: (4, 8),
16: (4, 4),
8: (2, 4)
}
rows, cols = layout[clip_len]
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, model_choice, activity):
clip_len = {
"microsoft/xclip-base-patch16-zero-shot": 32,
"microsoft/xclip-base-patch32-16-frames": 16,
"microsoft/xclip-base-patch32": 8
}.get(model_choice, 32)
indices = sample_uniform_frame_indices(clip_len, seg_len=len(VideoReader(uploaded_video)))
video = read_video_opencv(uploaded_video, indices)
concatenated_image = concatenate_frames(video, clip_len)
# Appending "other" to the list of activities
activities_list = [activity, "other"]
processor = AutoProcessor.from_pretrained(model_choice)
model = AutoModel.from_pretrained(model_choice)
inputs = processor(
text=activities_list,
videos=list(video),
return_tensors="pt",
padding=True,
)
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i])
logit = float(logits_per_video[0][i])
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index]) * 100
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.components.Video(label="Upload a video file"),
gr.components.Dropdown(choices=[
"microsoft/xclip-base-patch16-zero-shot",
"microsoft/xclip-base-patch32-16-frames",
"microsoft/xclip-base-patch32"
], label="Model Choice"),
gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
],
outputs=[
gr.components.Image(type="pil", label="Sampled Frames"),
gr.components.Textbox(type="text", label="Probabilities"),
gr.components.Textbox(type="text", label="Raw Scores"),
gr.components.Textbox(type="text", label="Top Prediction")
],
live=False
)
iface.launch()
|