Spaces:
Runtime error
Runtime error
File size: 2,018 Bytes
d68e244 7d14e74 d68e244 7d14e74 a25fae5 d68e244 683e48b d68e244 a25fae5 9735e42 2302f94 9735e42 d68e244 f9abe5d d68e244 7c1df62 d68e244 a844295 523f87f a3c2d69 d68e244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import model
import numpy as np
from torchvision import transforms
from PIL import Image
import glob
import time
def lowlight(image):
os.environ['CUDA_VISIBLE_DEVICES']=''
data_lowlight = Image.open(image)
data_lowlight = (np.asarray(data_lowlight)/255.0)
data_lowlight = torch.from_numpy(data_lowlight).float()
data_lowlight = data_lowlight.permute(2,0,1)
data_lowlight = data_lowlight.cpu().unsqueeze(0)
DCE_net = model.enhance_net_nopool().cpu()
DCE_net.load_state_dict(torch.load('Epoch99.pth', map_location=torch.device('cpu')))
start = time.time()
_,enhanced_image,_ = DCE_net(data_lowlight)
end_time = (time.time() - start)
print(end_time)
torchvision.utils.save_image(enhanced_image, f'01.png')
return '01.png'
title = "Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement"
description = "Low-light image enhancement using Zero-DCE model. Full paper: http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_Zero-Reference_Deep_Curve_Estimation_for_Low-Light_Image_Enhancement_CVPR_2020_paper.pdf"
article = "<p style='text-align: center'><a href='https://' target='_blank'>Compound Multi-branch Feature Fusion for Real Image Restoration</a> | <a href='https://github.com/FanChiMao/CMFNet' target='_blank'>Github Repo</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=52Hz_CMFNet_deblurring' alt='visitor badge'></center>"
examples = [['data/test_data/01.jpg'], ['data/test_data/02.jpg'], ['data/test_data/03.jpg'],]
gr.Interface(
lowlight,
[gr.inputs.Image(type="file", label="Input")],
outputs = "image",
title=title,
description=description,
article=article,
allow_flagging=False,
allow_screenshot=False,
examples=examples
).launch(debug=True)
|