File size: 5,967 Bytes
8975307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torchvision.models.vgg import vgg16
import numpy as np


class L_color(nn.Module):

    def __init__(self):
        super(L_color, self).__init__()

    def forward(self, x ):

        b,c,h,w = x.shape

        mean_rgb = torch.mean(x,[2,3],keepdim=True)
        mr,mg, mb = torch.split(mean_rgb, 1, dim=1)
        Drg = torch.pow(mr-mg,2)
        Drb = torch.pow(mr-mb,2)
        Dgb = torch.pow(mb-mg,2)
        k = torch.pow(torch.pow(Drg,2) + torch.pow(Drb,2) + torch.pow(Dgb,2),0.5)


        return k

			
class L_spa(nn.Module):

    def __init__(self):
        super(L_spa, self).__init__()
        # print(1)kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
        kernel_left = torch.FloatTensor( [[0,0,0],[-1,1,0],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
        kernel_right = torch.FloatTensor( [[0,0,0],[0,1,-1],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
        kernel_up = torch.FloatTensor( [[0,-1,0],[0,1, 0 ],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
        kernel_down = torch.FloatTensor( [[0,0,0],[0,1, 0],[0,-1,0]]).cuda().unsqueeze(0).unsqueeze(0)
        self.weight_left = nn.Parameter(data=kernel_left, requires_grad=False)
        self.weight_right = nn.Parameter(data=kernel_right, requires_grad=False)
        self.weight_up = nn.Parameter(data=kernel_up, requires_grad=False)
        self.weight_down = nn.Parameter(data=kernel_down, requires_grad=False)
        self.pool = nn.AvgPool2d(4)
    def forward(self, org , enhance ):
        b,c,h,w = org.shape

        org_mean = torch.mean(org,1,keepdim=True)
        enhance_mean = torch.mean(enhance,1,keepdim=True)

        org_pool =  self.pool(org_mean)			
        enhance_pool = self.pool(enhance_mean)	

        weight_diff =torch.max(torch.FloatTensor([1]).cuda() + 10000*torch.min(org_pool - torch.FloatTensor([0.3]).cuda(),torch.FloatTensor([0]).cuda()),torch.FloatTensor([0.5]).cuda())
        E_1 = torch.mul(torch.sign(enhance_pool - torch.FloatTensor([0.5]).cuda()) ,enhance_pool-org_pool)


        D_org_letf = F.conv2d(org_pool , self.weight_left, padding=1)
        D_org_right = F.conv2d(org_pool , self.weight_right, padding=1)
        D_org_up = F.conv2d(org_pool , self.weight_up, padding=1)
        D_org_down = F.conv2d(org_pool , self.weight_down, padding=1)

        D_enhance_letf = F.conv2d(enhance_pool , self.weight_left, padding=1)
        D_enhance_right = F.conv2d(enhance_pool , self.weight_right, padding=1)
        D_enhance_up = F.conv2d(enhance_pool , self.weight_up, padding=1)
        D_enhance_down = F.conv2d(enhance_pool , self.weight_down, padding=1)

        D_left = torch.pow(D_org_letf - D_enhance_letf,2)
        D_right = torch.pow(D_org_right - D_enhance_right,2)
        D_up = torch.pow(D_org_up - D_enhance_up,2)
        D_down = torch.pow(D_org_down - D_enhance_down,2)
        E = (D_left + D_right + D_up +D_down)
        # E = 25*(D_left + D_right + D_up +D_down)

        return E
class L_exp(nn.Module):

    def __init__(self,patch_size,mean_val):
        super(L_exp, self).__init__()
        # print(1)
        self.pool = nn.AvgPool2d(patch_size)
        self.mean_val = mean_val
    def forward(self, x ):

        b,c,h,w = x.shape
        x = torch.mean(x,1,keepdim=True)
        mean = self.pool(x)

        d = torch.mean(torch.pow(mean- torch.FloatTensor([self.mean_val] ).cuda(),2))
        return d
        
class L_TV(nn.Module):
    def __init__(self,TVLoss_weight=1):
        super(L_TV,self).__init__()
        self.TVLoss_weight = TVLoss_weight

    def forward(self,x):
        batch_size = x.size()[0]
        h_x = x.size()[2]
        w_x = x.size()[3]
        count_h =  (x.size()[2]-1) * x.size()[3]
        count_w = x.size()[2] * (x.size()[3] - 1)
        h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
        w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
        return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
class Sa_Loss(nn.Module):
    def __init__(self):
        super(Sa_Loss, self).__init__()
        # print(1)
    def forward(self, x ):
        # self.grad = np.ones(x.shape,dtype=np.float32)
        b,c,h,w = x.shape
        # x_de = x.cpu().detach().numpy()
        r,g,b = torch.split(x , 1, dim=1)
        mean_rgb = torch.mean(x,[2,3],keepdim=True)
        mr,mg, mb = torch.split(mean_rgb, 1, dim=1)
        Dr = r-mr
        Dg = g-mg
        Db = b-mb
        k =torch.pow( torch.pow(Dr,2) + torch.pow(Db,2) + torch.pow(Dg,2),0.5)
        # print(k)
        

        k = torch.mean(k)
        return k

class perception_loss(nn.Module):
    def __init__(self):
        super(perception_loss, self).__init__()
        features = vgg16(pretrained=True).features
        self.to_relu_1_2 = nn.Sequential() 
        self.to_relu_2_2 = nn.Sequential() 
        self.to_relu_3_3 = nn.Sequential()
        self.to_relu_4_3 = nn.Sequential()

        for x in range(4):
            self.to_relu_1_2.add_module(str(x), features[x])
        for x in range(4, 9):
            self.to_relu_2_2.add_module(str(x), features[x])
        for x in range(9, 16):
            self.to_relu_3_3.add_module(str(x), features[x])
        for x in range(16, 23):
            self.to_relu_4_3.add_module(str(x), features[x])
        
        # don't need the gradients, just want the features
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x):
        h = self.to_relu_1_2(x)
        h_relu_1_2 = h
        h = self.to_relu_2_2(h)
        h_relu_2_2 = h
        h = self.to_relu_3_3(h)
        h_relu_3_3 = h
        h = self.to_relu_4_3(h)
        h_relu_4_3 = h
        # out = (h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3)
        return h_relu_4_3