Spaces:
Runtime error
Runtime error
File size: 14,121 Bytes
eb0678a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors.
# Based on https://github.com/haotian-liu/LLaVA.
"""
This file demonstrates an implementation of a multiprocess Real-time Long Video Understanding System. With a multiprocess logging module.
main process: CLI server I/O, LLM inference
process-1: logger listener
process-2: frame generator,
process-3: frame memory manager
Author: Haoji Zhang, Haotian Liu
(This code is based on https://github.com/haotian-liu/LLaVA)
"""
import argparse
import requests
import logging
import torch
import numpy as np
import time
import os
from flash_vstream.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from flash_vstream.conversation import conv_templates, SeparatorStyle
from flash_vstream.model.builder import load_pretrained_model
from flash_vstream.utils import disable_torch_init
from flash_vstream.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from torch.multiprocessing import Process, Queue, Manager
from transformers import TextStreamer
from decord import VideoReader
from datetime import datetime
from PIL import Image
from io import BytesIO
class _Metric:
def __init__(self):
self._latest_value = None
self._sum = 0.0
self._max = 0.0
self._count = 0
@property
def val(self):
return self._latest_value
@property
def max(self):
return self._max
@property
def avg(self):
if self._count == 0:
return float('nan')
return self._sum / self._count
def add(self, value):
self._latest_value = value
self._sum += value
self._count += 1
if value > self._max:
self._max = value
def __str__(self):
latest_formatted = f"{self.val:.6f}" if self.val is not None else "None"
average_formatted = f"{self.avg:.6f}"
max_formatted = f"{self.max:.6f}"
return f"{latest_formatted} ({average_formatted}, {max_formatted})"
class MetricMeter:
def __init__(self):
self._metrics = {}
def add(self, key, value):
if key not in self._metrics:
self._metrics[key] = _Metric()
self._metrics[key].add(value)
def val(self, key):
metric = self._metrics.get(key)
if metric is None or metric.val is None:
raise ValueError(f"No values have been added for key '{key}'.")
return metric.val
def avg(self, key):
metric = self._metrics.get(key)
if metric is None:
raise ValueError(f"No values have been added for key '{key}'.")
return metric.avg
def max(self, key):
metric = self._metrics.get(key)
if metric is None:
raise ValueError(f"No values have been added for key '{key}'.")
return metric.max
def __getitem__(self, key):
metric = self._metrics.get(key)
if metric is None:
raise KeyError(f"The key '{key}' does not exist.")
return str(metric)
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def listener(queue, filename):
############## Start sub process-1: Listener #############
import sys, traceback
root = logging.getLogger()
root.setLevel(logging.DEBUG)
# h = logging.StreamHandler(sys.stdout)
h = logging.FileHandler(filename)
f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
h.setFormatter(f)
root.addHandler(h)
while True:
try:
record = queue.get()
if record is None: # None is a signal to finish
break
logger = logging.getLogger(record.name)
logger.handle(record) # No level or filter logic applied - just do it!
except Exception:
import sys, traceback
print('Whoops! Problem:', file=sys.stderr)
traceback.print_exc(file=sys.stderr)
def worker_configurer(queue):
h = logging.handlers.QueueHandler(queue) # Just the one handler needed
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.DEBUG)
def video_stream_similator(video_file, frame_queue, log_queue, video_fps=1.0, play_speed=1.0):
############## Start sub process-2: Simulator #############
worker_configurer(log_queue)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
vr = VideoReader(video_file)
sample_fps = round(vr.get_avg_fps() / video_fps)
frame_idx = [i for i in range(0, len(vr), sample_fps)]
video = vr.get_batch(frame_idx).asnumpy()
video = np.repeat(video, 6, axis=0)
length = video.shape[0]
sleep_time = 1 / video_fps / play_speed
time_meter = MetricMeter()
logger.info(f'Simulator Process: start, length = {length}')
try:
for start in range(0, length):
start_time = time.perf_counter()
end = min(start + 1, length)
video_clip = video[start:end]
frame_queue.put(video_clip)
if start > 0:
time_meter.add('real_sleep', start_time - last_start)
logger.info(f'Simulator: write {end - start} frames,\t{start} to {end},\treal_sleep={time_meter["real_sleep"]}')
if end < length:
time.sleep(sleep_time)
last_start = start_time
frame_queue.put(None)
except Exception as e:
print(f'Simulator Exception: {e}')
time.sleep(0.1)
logger.info(f'Simulator Process: end')
def frame_memory_manager(model, image_processor, frame_queue, log_queue):
############## Start sub process-3: Memory Manager #############
worker_configurer(log_queue)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
time_meter = MetricMeter()
logger.info(f'MemManager Process: start')
frame_cnt = 0
while True:
try:
video_clip = frame_queue.get()
start_time = time.perf_counter()
if video_clip is None:
logger.info(f'MemManager: Ooops, get None')
break
logger.info(f'MemManager: get {video_clip.shape[0]} frames from queue')
image = image_processor.preprocess(video_clip, return_tensors='pt')['pixel_values']
image = image.unsqueeze(0)
image_tensor = image.to(model.device, dtype=torch.float16)
# time_2 = time.perf_counter()
logger.info(f'MemManager: Start embedding')
with torch.inference_mode():
model.embed_video_streaming(image_tensor)
logger.info(f'MemManager: End embedding')
end_time = time.perf_counter()
if frame_cnt > 0:
time_meter.add('memory_latency', end_time - start_time)
logger.info(f'MemManager: embedded {video_clip.shape[0]} frames,\tidx={frame_cnt},\tmemory_latency={time_meter["memory_latency"]}')
else:
logger.info(f'MemManager: embedded {video_clip.shape[0]} frames,\tidx={frame_cnt},\tmemory_latency={end_time - start_time:.6f}, not logged')
frame_cnt += video_clip.shape[0]
except Exception as e:
print(f'MemManager Exception: {e}')
time.sleep(0.1)
logger.info(f'MemManager Process: end')
def main(args):
# torch.multiprocessing.log_to_stderr(logging.DEBUG)
torch.multiprocessing.set_start_method('spawn', force=True)
disable_torch_init()
log_queue = Queue()
frame_queue = Queue(maxsize=10)
processes = []
############## Start listener process #############
p1 = Process(target=listener, args=(log_queue, args.log_file))
processes.append(p1)
p1.start()
############## Start main process #############
worker_configurer(log_queue)
logger = logging.getLogger(__name__)
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
logger.info(f'Using conv_mode={args.conv_mode}')
conv = conv_templates[args.conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
with Manager() as manager:
image_tensor = None
model.use_video_streaming_mode = True
model.video_embedding_memory = manager.list()
if args.video_max_frames is not None:
model.config.video_max_frames = args.video_max_frames
logger.info(f'Important: set model.config.video_max_frames = {model.config.video_max_frames}')
logger.info(f'Important: set video_fps = {args.video_fps}')
logger.info(f'Important: set play_speed = {args.play_speed}')
############## Start simulator process #############
p2 = Process(target=video_stream_similator,
args=(args.video_file, frame_queue, log_queue, args.video_fps, args.play_speed))
processes.append(p2)
p2.start()
############## Start memory manager process #############
p3 = Process(target=frame_memory_manager,
args=(model, image_processor, frame_queue, log_queue))
processes.append(p3)
p3.start()
# start QA server
start_time = datetime.now()
time_meter = MetricMeter()
conv_cnt = 0
while True:
time.sleep(5)
try:
# inp = input(f"{roles[0]}: ")
inp = "what is in the video?"
except EOFError:
inp = ""
if not inp:
print("exit...")
break
# 获取当前时间
now = datetime.now()
conv_start_time = time.perf_counter()
# 将当前时间格式化为字符串
current_time = now.strftime("%H:%M:%S")
duration = now.timestamp() - start_time.timestamp()
# 打印当前时间
print("\nCurrent Time:", current_time, "Run for:", duration)
print(f"{roles[0]}: {inp}", end="\n")
print(f"{roles[1]}: ", end="")
# every conversation is a new conversation
conv = conv_templates[args.conv_mode].copy()
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
llm_start_time = time.perf_counter()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria]
)
llm_end_time = time.perf_counter()
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
conv.messages[-1][-1] = outputs
conv_end_time = time.perf_counter()
if conv_cnt > 0:
time_meter.add('conv_latency', conv_end_time - conv_start_time)
time_meter.add('llm_latency', llm_end_time - llm_start_time)
time_meter.add('real_sleep', conv_start_time - last_conv_start_time)
logger.info(f'CliServer: idx={conv_cnt},\treal_sleep={time_meter["real_sleep"]},\tconv_latency={time_meter["conv_latency"]},\tllm_latency={time_meter["llm_latency"]}')
else:
logger.info(f'CliServer: idx={conv_cnt},\tconv_latency={conv_end_time - conv_start_time},\tllm_latency={llm_end_time - llm_start_time}')
conv_cnt += 1
last_conv_start_time = conv_start_time
for p in processes:
p.terminate()
print("All processes finished.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-file", type=str, default=None)
parser.add_argument("--video-file", type=str, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default="vicuna_v1")
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--log-file", type=str, default="tmp_cli.log")
parser.add_argument("--use_1process", action="store_true")
parser.add_argument("--video_max_frames", type=int, default=None)
parser.add_argument("--video_fps", type=float, default=1.0)
parser.add_argument("--play_speed", type=float, default=1.0)
args = parser.parse_args()
main(args)
|