File size: 5,090 Bytes
050c87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0e62d
7cdb8cc
5f0e62d
 
7cdb8cc
 
050c87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161120c
d89de93
161120c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89de93
 
 
 
 
050c87a
c15f918
050c87a
 
 
 
 
 
c77a11e
7cdb8cc
 
161120c
c77a11e
f633603
 
161120c
f633603
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget 
import gradio as gr
from huggingface_hub import snapshot_download
import os 

PATH_TO_LABELS = 'data/label_map.pbtxt'   
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def pil_image_as_numpy_array(pilimg):

    img_array = tf.keras.utils.img_to_array(pilimg)
    img_array = np.expand_dims(img_array, axis=0)
    return img_array
    
def load_image_into_numpy_array(path):
                                    
    image = None
    image_data = tf.io.gfile.GFile(path, 'rb').read()
    image = Image.open(BytesIO(image_data))
    return pil_image_as_numpy_array(image)            

def load_model():
    download_dir = snapshot_download(REPO_ID)
    saved_model_dir = os.path.join(download_dir, "saved_model")
    detection_model = tf.saved_model.load(saved_model_dir)
    return detection_model

def load_model2():
    wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
    tarfile.open("balloon_model.tar.gz").extractall()
    model_dir = 'saved_model'    
    detection_model = tf.saved_model.load(str(model_dir))
    return detection_model    

# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
# 

def predict(pilimg):
    # Check if the input is an image or a video
    #if isinstance(pilimg, np.ndarray):  # Input is an image
        image_np = pil_image_as_numpy_array(pilimg)
        return predict2(image_np)
   # else:
       # print("This is video file")

def predict2(image_np):

    results = detection_model(image_np)

    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=200,
        min_score_thresh=.60,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
    
    return result_pil_img
def write_video(video_in_filepath, video_out_filepath, detection_model):
       
    video_reader = cv2.VideoCapture(video_in_filepath)
    
    nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = video_reader.get(cv2.CAP_PROP_FPS)
    
    video_writer = cv2.VideoWriter(video_out_filepath,
                               cv2.VideoWriter_fourcc(*'mp4v'), 
                               fps, 
                               (frame_w, frame_h))

    for i in tqdm(range(nb_frames)):
        ret, image_np = video_reader.read()
        input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.uint8)
        results = detection_model(input_tensor)
        viz_utils.visualize_boxes_and_labels_on_image_array(
                  image_np,
                  results['detection_boxes'][0].numpy(),
                  (results['detection_classes'][0].numpy()+ label_id_offset).astype(int),
                  results['detection_scores'][0].numpy(),
                  category_index,
                  use_normalized_coordinates=True,
                  max_boxes_to_draw=200,
                  min_score_thresh=.50,
                  agnostic_mode=False,
                  line_thickness=2)

        video_writer.write(np.uint8(image_np))
                
    # Release camera and close windows
    video_reader.release()
    video_writer.release() 
    cv2.destroyAllWindows() 
    cv2.waitKey(1)
    
def predict_video (video_file_name):
    detected_video_file = "detected_video.mp4"
    write_video(video_file_name,detected_video_file,detection_model)
    return detected_video_file

REPO_ID = "YEHTUT/tfodmodel"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)

# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
Image_tab = gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             outputs=gr.Image(type="pil")
             )
Video_tab = gr.Interface(fn=predict_video,
             inputs=gr.Video,
             outputs=gr.Video
             )

gr.TabbedInterface([Image_tab, Video_tab], ["Image", "Video"]).launch(share=True)
#gr.Interface(fn=predict,
#             inputs=gr.Image(type="pil"),
#             outputs=gr.Image(type="pil")
#             ).launch(share=True)