Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,962 Bytes
c801df7 b2c5cb8 acb34dc b2c5cb8 acb34dc b2c5cb8 e71abcc 161e0b2 b2c5cb8 6193aca 161e0b2 b2c5cb8 acb34dc b2c5cb8 acb34dc b2c5cb8 161e0b2 b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 e71abcc b2c5cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# CRITICAL: Import spaces FIRST before any CUDA-related packages
import spaces
import os
# Now import other packages
import gradio as gr
import torch
from PIL import Image
from transformers import (
AutoProcessor,
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer
)
from threading import Thread
import time
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Dots.OCR
MODEL_PATH_D = "strangervisionhf/dots.ocr-base-fix"
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
model_d = AutoModelForCausalLM.from_pretrained(
MODEL_PATH_D,
attn_implementation="sdpa",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
).eval()
# Load olmOCR-2-7B-1025 (non-FP8 version for simplicity)
MODEL_ID_M = "allenai/olmOCR-2-7B-1025"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = AutoModel.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
device_map="auto"
).eval()
# Load DeepSeek-OCR
MODEL_ID_DS = "deepseek-ai/DeepSeek-OCR"
tokenizer_ds = AutoTokenizer.from_pretrained(MODEL_ID_DS, trust_remote_code=True)
model_ds = AutoModel.from_pretrained(
MODEL_ID_DS,
attn_implementation="sdpa",
trust_remote_code=True,
use_safetensors=True,
device_map="auto"
).eval().to(torch.bfloat16)
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float, resolution_mode: str):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
"""
if image is None:
yield "Please upload an image.", "Please upload an image."
return
# Handle DeepSeek-OCR separately due to different API
if model_name == "DeepSeek-OCR":
resolution_configs = {
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True}
}
config = resolution_configs[resolution_mode]
temp_image_path = "/tmp/temp_ocr_image.jpg"
image.save(temp_image_path)
if not text:
text = "Free OCR."
prompt_ds = f"<image>\n{text}"
try:
result = model_ds.infer(
tokenizer_ds,
prompt=prompt_ds,
image_file=temp_image_path,
output_path="/tmp",
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
test_compress=True,
save_results=False
)
yield result, result
except Exception as e:
yield f"Error: {str(e)}", f"Error: {str(e)}"
finally:
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
return
# Handle other models with standard API
if model_name == "olmOCR-2-7B-1025":
processor = processor_m
model = model_m
elif model_name == "Dots.OCR":
processor = processor_d
model = model_d
else:
yield "Invalid model selected.", "Invalid model selected."
return
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text if text else "Perform OCR on this image."},
]
}]
prompt_full = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True
).to(device)
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Image examples
image_examples = [
["OCR the content perfectly.", "examples/3.jpg"],
["Perform OCR on the image.", "examples/1.jpg"],
["Extract the contents. [page].", "examples/2.jpg"],
]
# CSS styling
css = """
.gradio-container {
max-width: 1400px;
margin: auto;
}
.model-selector {
font-size: 16px;
}
"""
# Build Gradio interface
with gr.Blocks(css=css, title="Multi-Model OCR Space") as demo:
gr.Markdown(
"""
# 🔍 Multi-Model OCR Comparison Space
Compare three state-of-the-art OCR models:
- **Dots.OCR**: Lightweight and efficient OCR
- **olmOCR-2-7B-1025**: Advanced OCR for math, tables, and complex layouts (82.4% accuracy)
- **DeepSeek-OCR**: Context compression OCR with 10× compression (97% accuracy)
"""
)
with gr.Row():
with gr.Column(scale=1):
model_selector = gr.Dropdown(
choices=["Dots.OCR", "olmOCR-2-7B-1025", "DeepSeek-OCR"],
value="olmOCR-2-7B-1025",
label="Select OCR Model",
elem_classes=["model-selector"]
)
resolution_selector = gr.Dropdown(
choices=["Tiny", "Small", "Base", "Large", "Gundam"],
value="Gundam",
label="DeepSeek-OCR Resolution Mode",
info="Only applies to DeepSeek-OCR. Gundam mode recommended.",
visible=False
)
image_input = gr.Image(type="pil", label="Upload Image")
text_input = gr.Textbox(
value="Perform OCR on this image.",
label="Prompt",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens_slider = gr.Slider(
minimum=256,
maximum=8192,
value=2048,
step=256,
label="Max New Tokens"
)
temperature_slider = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P"
)
top_k_slider = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K"
)
repetition_penalty_slider = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty"
)
submit_btn = gr.Button("🚀 Extract Text", variant="primary")
clear_btn = gr.ClearButton()
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Extracted Text",
lines=20,
show_copy_button=True
)
output_markdown = gr.Markdown(label="Formatted Output")
gr.Examples(
examples=image_examples,
inputs=[text_input, image_input],
label="Example Images"
)
# Show/hide resolution selector based on model
def update_resolution_visibility(model_name):
return gr.update(visible=(model_name == "DeepSeek-OCR"))
model_selector.change(
fn=update_resolution_visibility,
inputs=[model_selector],
outputs=[resolution_selector]
)
# Event handlers
submit_btn.click(
fn=generate_image,
inputs=[
model_selector,
text_input,
image_input,
max_tokens_slider,
temperature_slider,
top_p_slider,
top_k_slider,
repetition_penalty_slider,
resolution_selector
],
outputs=[output_text, output_markdown]
)
clear_btn.add([image_input, text_input, output_text, output_markdown])
gr.Markdown(
"""
### Model Strengths:
**Dots.OCR**: Fast and lightweight, great for simple documents and quick processing
**olmOCR-2-7B-1025**: Best for complex documents with tables, LaTeX equations, multi-column layouts, and handwritten text
**DeepSeek-OCR**: Excellent for markdown conversion, table extraction, and efficient context compression (10× smaller output)
### Tips:
- Upload clear, well-lit images for best results
- Use olmOCR for academic papers and technical documents
- Use DeepSeek for efficient processing of large document batches
- Adjust temperature for more creative or conservative outputs
"""
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|