File size: 25,269 Bytes
8ca3a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# python3.7
"""Contains the implementation of discriminator described in StyleGAN.

Paper: https://arxiv.org/pdf/1812.04948.pdf

Official TensorFlow implementation: https://github.com/NVlabs/stylegan
"""

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast

__all__ = ['StyleGANDiscriminator']

# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]

# Fused-scale options allowed.
_FUSED_SCALE_ALLOWED = [True, False, 'auto']

# pylint: disable=missing-function-docstring

class StyleGANDiscriminator(nn.Module):
    """Defines the discriminator network in StyleGAN.

    NOTE: The discriminator takes images with `RGB` channel order and pixel
    range [-1, 1] as inputs.

    Settings for the backbone:

    (1) resolution: The resolution of the input image. (default: -1)
    (2) init_res: Smallest resolution of the convolutional backbone.
        (default: 4)
    (3) image_channels: Number of channels of the input image. (default: 3)
    (4) fused_scale:  The strategy of fusing `conv2d` and `downsample` as one
        operator. `True` means blocks from all resolutions will fuse. `False`
        means blocks from all resolutions will not fuse. `auto` means blocks
        from resolutions higher than (or equal to) `fused_scale_res` will fuse.
        (default: `auto`)
    (5) fused_scale_res: Minimum resolution to fuse `conv2d` and `downsample`
        as one operator. This field only takes effect if `fused_scale` is set
        as `auto`. (default: 128)
    (6) use_wscale: Whether to use weight scaling. (default: True)
    (7) wscale_gain: The factor to control weight scaling. (default: sqrt(2.0))
    (8) lr_mul: Learning rate multiplier for backbone. (default: 1.0)
    (9) mbstd_groups: Group size for the minibatch standard deviation layer.
        `0` means disable. (default: 4)
    (10) mbstd_channels: Number of new channels (appended to the original
         feature map) after the minibatch standard deviation layer. (default: 1)
    (11) fmaps_base: Factor to control number of feature maps for each layer.
         (default: 16 << 10)
    (12) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
    (13) filter_kernel: Kernel used for filtering (e.g., downsampling).
         (default: (1, 2, 1))
    (14) eps: A small value to avoid divide overflow. (default: 1e-8)

    Settings for conditional model:

    (1) label_dim: Dimension of the additional label for conditional generation.
        In one-hot conditioning case, it is equal to the number of classes. If
        set to 0, conditioning training will be disabled. (default: 0)

    Runtime settings:

    (1) enable_amp: Whether to enable automatic mixed precision training.
        (default: False)
    """

    def __init__(self,
                 # Settings for backbone.
                 resolution=-1,
                 init_res=4,
                 image_channels=3,
                 fused_scale='auto',
                 fused_scale_res=128,
                 use_wscale=True,
                 wscale_gain=np.sqrt(2.0),
                 lr_mul=1.0,
                 mbstd_groups=4,
                 mbstd_channels=1,
                 fmaps_base=16 << 10,
                 fmaps_max=512,
                 filter_kernel=(1, 2, 1),
                 eps=1e-8,
                 # Settings for conditional model.
                 label_dim=0):
        """Initializes with basic settings.

        Raises:
            ValueError: If the `resolution` is not supported, or `fused_scale`
                is not supported.
        """
        super().__init__()

        if resolution not in _RESOLUTIONS_ALLOWED:
            raise ValueError(f'Invalid resolution: `{resolution}`!\n'
                             f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
        if fused_scale not in _FUSED_SCALE_ALLOWED:
            raise ValueError(f'Invalid fused-scale option: `{fused_scale}`!\n'
                             f'Options allowed: {_FUSED_SCALE_ALLOWED}.')

        self.init_res = init_res
        self.init_res_log2 = int(np.log2(init_res))
        self.resolution = resolution
        self.final_res_log2 = int(np.log2(resolution))
        self.image_channels = image_channels
        self.fused_scale = fused_scale
        self.fused_scale_res = fused_scale_res
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.lr_mul = lr_mul
        self.mbstd_groups = mbstd_groups
        self.mbstd_channels = mbstd_channels
        self.fmaps_base = fmaps_base
        self.fmaps_max = fmaps_max
        self.filter_kernel = filter_kernel
        self.eps = eps
        self.label_dim = label_dim

        # Level-of-details (used for progressive training).
        self.register_buffer('lod', torch.zeros(()))
        self.pth_to_tf_var_mapping = {'lod': 'lod'}

        for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
            res = 2 ** res_log2
            in_channels = self.get_nf(res)
            out_channels = self.get_nf(res // 2)
            block_idx = self.final_res_log2 - res_log2

            # Input convolution layer for each resolution.
            self.add_module(
                f'input{block_idx}',
                ConvLayer(in_channels=image_channels,
                          out_channels=in_channels,
                          kernel_size=1,
                          add_bias=True,
                          scale_factor=1,
                          fused_scale=False,
                          filter_kernel=None,
                          use_wscale=use_wscale,
                          wscale_gain=wscale_gain,
                          lr_mul=lr_mul,
                          activation_type='lrelu'))
            self.pth_to_tf_var_mapping[f'input{block_idx}.weight'] = (
                f'FromRGB_lod{block_idx}/weight')
            self.pth_to_tf_var_mapping[f'input{block_idx}.bias'] = (
                f'FromRGB_lod{block_idx}/bias')

            # Convolution block for each resolution (except the last one).
            if res != self.init_res:
                # First layer (kernel 3x3) without downsampling.
                layer_name = f'layer{2 * block_idx}'
                self.add_module(
                    layer_name,
                    ConvLayer(in_channels=in_channels,
                              out_channels=in_channels,
                              kernel_size=3,
                              add_bias=True,
                              scale_factor=1,
                              fused_scale=False,
                              filter_kernel=None,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              lr_mul=lr_mul,
                              activation_type='lrelu'))
                self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
                    f'{res}x{res}/Conv0/weight')
                self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
                    f'{res}x{res}/Conv0/bias')

                # Second layer (kernel 3x3) with downsampling
                layer_name = f'layer{2 * block_idx + 1}'
                self.add_module(
                    layer_name,
                    ConvLayer(in_channels=in_channels,
                              out_channels=out_channels,
                              kernel_size=3,
                              add_bias=True,
                              scale_factor=2,
                              fused_scale=(res >= fused_scale_res
                                           if fused_scale == 'auto'
                                           else fused_scale),
                              filter_kernel=filter_kernel,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              lr_mul=lr_mul,
                              activation_type='lrelu'))
                self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
                    f'{res}x{res}/Conv1_down/weight')
                self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
                    f'{res}x{res}/Conv1_down/bias')

            # Convolution block for last resolution.
            else:
                self.mbstd = MiniBatchSTDLayer(groups=mbstd_groups,
                                               new_channels=mbstd_channels,
                                               eps=eps)

                # First layer (kernel 3x3) without downsampling.
                layer_name = f'layer{2 * block_idx}'
                self.add_module(
                    layer_name,
                    ConvLayer(in_channels=in_channels + mbstd_channels,
                              out_channels=in_channels,
                              kernel_size=3,
                              add_bias=True,
                              scale_factor=1,
                              fused_scale=False,
                              filter_kernel=None,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              lr_mul=lr_mul,
                              activation_type='lrelu'))
                self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
                    f'{res}x{res}/Conv/weight')
                self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
                    f'{res}x{res}/Conv/bias')

                # Second layer, as a fully-connected layer.
                layer_name = f'layer{2 * block_idx + 1}'
                self.add_module(
                    f'layer{2 * block_idx + 1}',
                    DenseLayer(in_channels=in_channels * res * res,
                               out_channels=in_channels,
                               add_bias=True,
                               use_wscale=use_wscale,
                               wscale_gain=wscale_gain,
                               lr_mul=lr_mul,
                               activation_type='lrelu'))
                self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
                    f'{res}x{res}/Dense0/weight')
                self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
                    f'{res}x{res}/Dense0/bias')

                # Final dense layer to output score.
                self.output = DenseLayer(in_channels=in_channels,
                                         out_channels=max(label_dim, 1),
                                         add_bias=True,
                                         use_wscale=use_wscale,
                                         wscale_gain=1.0,
                                         lr_mul=lr_mul,
                                         activation_type='linear')
                self.pth_to_tf_var_mapping['output.weight'] = (
                    f'{res}x{res}/Dense1/weight')
                self.pth_to_tf_var_mapping['output.bias'] = (
                    f'{res}x{res}/Dense1/bias')

    def get_nf(self, res):
        """Gets number of feature maps according to the given resolution."""
        return min(self.fmaps_base // res, self.fmaps_max)

    def forward(self, image, label=None, lod=None, enable_amp=False):
        expected_shape = (self.image_channels, self.resolution, self.resolution)
        if image.ndim != 4 or image.shape[1:] != expected_shape:
            raise ValueError(f'The input tensor should be with shape '
                             f'[batch_size, channel, height, width], where '
                             f'`channel` equals to {self.image_channels}, '
                             f'`height`, `width` equal to {self.resolution}!\n'
                             f'But `{image.shape}` is received!')

        lod = self.lod.item() if lod is None else lod
        if lod + self.init_res_log2 > self.final_res_log2:
            raise ValueError(f'Maximum level-of-details (lod) is '
                             f'{self.final_res_log2 - self.init_res_log2}, '
                             f'but `{lod}` is received!')

        if self.label_dim:
            if label is None:
                raise ValueError(f'Model requires an additional label '
                                 f'(with dimension {self.label_dim}) as input, '
                                 f'but no label is received!')
            batch = image.shape[0]
            if (label.ndim != 2 or label.shape != (batch, self.label_dim)):
                raise ValueError(f'Input label should be with shape '
                                 f'[batch_size, label_dim], where '
                                 f'`batch_size` equals to {batch}, and '
                                 f'`label_dim` equals to {self.label_dim}!\n'
                                 f'But `{label.shape}` is received!')
            label = label.to(dtype=torch.float32)

        with autocast(enabled=enable_amp):
            for res_log2 in range(
                    self.final_res_log2, self.init_res_log2 - 1, -1):
                block_idx = current_lod = self.final_res_log2 - res_log2
                if current_lod <= lod < current_lod + 1:
                    x = getattr(self, f'input{block_idx}')(image)
                elif current_lod - 1 < lod < current_lod:
                    alpha = lod - np.floor(lod)
                    y = getattr(self, f'input{block_idx}')(image)
                    x = y * alpha + x * (1 - alpha)
                if lod < current_lod + 1:
                    if res_log2 == self.init_res_log2:
                        x = self.mbstd(x)
                    x = getattr(self, f'layer{2 * block_idx}')(x)
                    x = getattr(self, f'layer{2 * block_idx + 1}')(x)
                if lod > current_lod:
                    image = F.avg_pool2d(
                        image, kernel_size=2, stride=2, padding=0)
            x = self.output(x)

            if self.label_dim:
                x = (x * label).sum(dim=1, keepdim=True)

        results = {
            'score': x,
            'label': label
        }
        return results


class MiniBatchSTDLayer(nn.Module):
    """Implements the minibatch standard deviation layer."""

    def __init__(self, groups, new_channels, eps):
        super().__init__()
        self.groups = groups
        self.new_channels = new_channels
        self.eps = eps

    def extra_repr(self):
        return (f'groups={self.groups}, '
                f'new_channels={self.new_channels}, '
                f'epsilon={self.eps}')

    def forward(self, x):
        if self.groups <= 1 or self.new_channels < 1:
            return x

        N, C, H, W = x.shape
        G = min(self.groups, N)  # Number of groups.
        nC = self.new_channels  # Number of channel groups.
        c = C // nC             # Channels per channel group.

        y = x.reshape(G, -1, nC, c, H, W)  # [GnFcHW]
        y = y - y.mean(dim=0)              # [GnFcHW]
        y = y.square().mean(dim=0)         # [nFcHW]
        y = (y + self.eps).sqrt()          # [nFcHW]
        y = y.mean(dim=(2, 3, 4))          # [nF]
        y = y.reshape(-1, nC, 1, 1)        # [nF11]
        y = y.repeat(G, 1, H, W)           # [NFHW]
        x = torch.cat((x, y), dim=1)       # [N(C+F)HW]

        return x


class Blur(torch.autograd.Function):
    """Defines blur operation with customized gradient computation."""

    @staticmethod
    def forward(ctx, x, kernel):
        assert kernel.shape[2] == 3 and kernel.shape[3] == 3
        ctx.save_for_backward(kernel)
        y = F.conv2d(input=x,
                     weight=kernel,
                     bias=None,
                     stride=1,
                     padding=1,
                     groups=x.shape[1])
        return y

    @staticmethod
    def backward(ctx, dy):
        kernel, = ctx.saved_tensors
        dx = BlurBackPropagation.apply(dy, kernel)
        return dx, None, None


class BlurBackPropagation(torch.autograd.Function):
    """Defines the back propagation of blur operation.

    NOTE: This is used to speed up the backward of gradient penalty.
    """

    @staticmethod
    def forward(ctx, dy, kernel):
        ctx.save_for_backward(kernel)
        dx = F.conv2d(input=dy,
                      weight=kernel.flip((2, 3)),
                      bias=None,
                      stride=1,
                      padding=1,
                      groups=dy.shape[1])
        return dx

    @staticmethod
    def backward(ctx, ddx):
        kernel, = ctx.saved_tensors
        ddy = F.conv2d(input=ddx,
                       weight=kernel,
                       bias=None,
                       stride=1,
                       padding=1,
                       groups=ddx.shape[1])
        return ddy, None, None


class ConvLayer(nn.Module):
    """Implements the convolutional layer.

    If downsampling is needed (i.e., `scale_factor = 2`), the feature map will
    be filtered with `filter_kernel` first. If `fused_scale` is set as `True`,
    `conv2d` and `downsample` will be fused as one operator, using stride
    convolution.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 add_bias,
                 scale_factor,
                 fused_scale,
                 filter_kernel,
                 use_wscale,
                 wscale_gain,
                 lr_mul,
                 activation_type):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            kernel_size: Size of the convolutional kernels.
            add_bias: Whether to add bias onto the convolutional result.
            scale_factor: Scale factor for downsampling. `1` means skip
                downsampling.
            fused_scale: Whether to fuse `conv2d` and `downsample` as one
                operator, using stride convolution.
            filter_kernel: Kernel used for filtering.
            use_wscale: Whether to use weight scaling.
            wscale_gain: Gain factor for weight scaling.
            lr_mul: Learning multiplier for both weight and bias.
            activation_type: Type of activation.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.add_bias = add_bias
        self.scale_factor = scale_factor
        self.fused_scale = fused_scale
        self.filter_kernel = filter_kernel
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.lr_mul = lr_mul
        self.activation_type = activation_type

        weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
        fan_in = kernel_size * kernel_size * in_channels
        wscale = wscale_gain / np.sqrt(fan_in)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
            self.wscale = wscale * lr_mul
        else:
            self.weight = nn.Parameter(
                torch.randn(*weight_shape) * wscale / lr_mul)
            self.wscale = lr_mul

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
            self.bscale = lr_mul
        else:
            self.bias = None

        if scale_factor > 1:
            assert filter_kernel is not None
            kernel = np.array(filter_kernel, dtype=np.float32).reshape(1, -1)
            kernel = kernel.T.dot(kernel)
            kernel = kernel / np.sum(kernel)
            kernel = kernel[np.newaxis, np.newaxis]
            self.register_buffer('filter', torch.from_numpy(kernel))

        if scale_factor > 1 and fused_scale:  # use stride convolution.
            self.stride = scale_factor
        else:
            self.stride = 1
        self.padding = kernel_size // 2

        assert activation_type in ['linear', 'relu', 'lrelu']

    def extra_repr(self):
        return (f'in_ch={self.in_channels}, '
                f'out_ch={self.out_channels}, '
                f'ksize={self.kernel_size}, '
                f'wscale_gain={self.wscale_gain:.3f}, '
                f'bias={self.add_bias}, '
                f'lr_mul={self.lr_mul:.3f}, '
                f'downsample={self.scale_factor}, '
                f'fused_scale={self.fused_scale}, '
                f'downsample_filter={self.filter_kernel}, '
                f'act={self.activation_type}')

    def forward(self, x):
        if self.scale_factor > 1:
            # Disable `autocast` for customized autograd function.
            # Please check reference:
            # https://pytorch.org/docs/stable/notes/amp_examples.html#autocast-and-custom-autograd-functions
            with autocast(enabled=False):
                f = self.filter.repeat(self.in_channels, 1, 1, 1)
                x = Blur.apply(x.float(), f)  # Always use FP32.

        weight = self.weight
        if self.wscale != 1.0:
            weight = weight * self.wscale
        bias = None
        if self.bias is not None:
            bias = self.bias
            if self.bscale != 1.0:
                bias = bias * self.bscale

        if self.scale_factor > 1 and self.fused_scale:
            weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0)
            weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] +
                      weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) * 0.25
        x = F.conv2d(x,
                     weight=weight,
                     bias=bias,
                     stride=self.stride,
                     padding=self.padding)
        if self.scale_factor > 1 and not self.fused_scale:
            down = self.scale_factor
            x = F.avg_pool2d(x, kernel_size=down, stride=down, padding=0)

        if self.activation_type == 'linear':
            pass
        elif self.activation_type == 'relu':
            x = F.relu(x, inplace=True)
        elif self.activation_type == 'lrelu':
            x = F.leaky_relu(x, negative_slope=0.2, inplace=True)
        else:
            raise NotImplementedError(f'Not implemented activation type '
                                      f'`{self.activation_type}`!')

        return x


class DenseLayer(nn.Module):
    """Implements the dense layer."""

    def __init__(self,
                 in_channels,
                 out_channels,
                 add_bias,
                 use_wscale,
                 wscale_gain,
                 lr_mul,
                 activation_type):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            add_bias: Whether to add bias onto the fully-connected result.
            use_wscale: Whether to use weight scaling.
            wscale_gain: Gain factor for weight scaling.
            lr_mul: Learning multiplier for both weight and bias.
            activation_type: Type of activation.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.add_bias = add_bias
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.lr_mul = lr_mul
        self.activation_type = activation_type

        weight_shape = (out_channels, in_channels)
        wscale = wscale_gain / np.sqrt(in_channels)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
            self.wscale = wscale * lr_mul
        else:
            self.weight = nn.Parameter(
                torch.randn(*weight_shape) * wscale / lr_mul)
            self.wscale = lr_mul

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
            self.bscale = lr_mul
        else:
            self.bias = None

        assert activation_type in ['linear', 'relu', 'lrelu']

    def extra_repr(self):
        return (f'in_ch={self.in_channels}, '
                f'out_ch={self.out_channels}, '
                f'wscale_gain={self.wscale_gain:.3f}, '
                f'bias={self.add_bias}, '
                f'lr_mul={self.lr_mul:.3f}, '
                f'act={self.activation_type}')

    def forward(self, x):
        if x.ndim != 2:
            x = x.flatten(start_dim=1)

        weight = self.weight
        if self.wscale != 1.0:
            weight = weight * self.wscale
        bias = None
        if self.bias is not None:
            bias = self.bias
            if self.bscale != 1.0:
                bias = bias * self.bscale

        x = F.linear(x, weight=weight, bias=bias)

        if self.activation_type == 'linear':
            pass
        elif self.activation_type == 'relu':
            x = F.relu(x, inplace=True)
        elif self.activation_type == 'lrelu':
            x = F.leaky_relu(x, negative_slope=0.2, inplace=True)
        else:
            raise NotImplementedError(f'Not implemented activation type '
                                      f'`{self.activation_type}`!')

        return x

# pylint: enable=missing-function-docstring