File size: 17,833 Bytes
8ca3a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# python3.7
"""Contains the implementation of discriminator described in PGGAN.

Paper: https://arxiv.org/pdf/1710.10196.pdf

Official TensorFlow implementation:
https://github.com/tkarras/progressive_growing_of_gans
"""

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['PGGANDiscriminator']

# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]

# Default gain factor for weight scaling.
_WSCALE_GAIN = np.sqrt(2.0)

# pylint: disable=missing-function-docstring

class PGGANDiscriminator(nn.Module):
    """Defines the discriminator network in PGGAN.

    NOTE: The discriminator takes images with `RGB` channel order and pixel
    range [-1, 1] as inputs.

    Settings for the network:

    (1) resolution: The resolution of the input image.
    (2) init_res: Smallest resolution of the convolutional backbone.
        (default: 4)
    (3) image_channels: Number of channels of the input image. (default: 3)
    (4) label_dim: Dimension of the additional label for conditional generation.
        In one-hot conditioning case, it is equal to the number of classes. If
        set to 0, conditioning training will be disabled. (default: 0)
    (5) fused_scale: Whether to fused `conv2d` and `downsample` together,
        resulting in `conv2d` with strides. (default: False)
    (6) use_wscale: Whether to use weight scaling. (default: True)
    (7) wscale_gain: The factor to control weight scaling. (default: sqrt(2.0))
    (8) mbstd_groups: Group size for the minibatch standard deviation layer.
        `0` means disable. (default: 16)
    (9) fmaps_base: Factor to control number of feature maps for each layer.
        (default: 16 << 10)
    (10) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
    (11) eps: A small value to avoid divide overflow. (default: 1e-8)
    """

    def __init__(self,
                 resolution,
                 init_res=4,
                 image_channels=3,
                 label_dim=0,
                 fused_scale=False,
                 use_wscale=True,
                 wscale_gain=np.sqrt(2.0),
                 mbstd_groups=16,
                 fmaps_base=16 << 10,
                 fmaps_max=512,
                 eps=1e-8):
        """Initializes with basic settings.

        Raises:
            ValueError: If the `resolution` is not supported.
        """
        super().__init__()

        if resolution not in _RESOLUTIONS_ALLOWED:
            raise ValueError(f'Invalid resolution: `{resolution}`!\n'
                             f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')

        self.init_res = init_res
        self.init_res_log2 = int(np.log2(self.init_res))
        self.resolution = resolution
        self.final_res_log2 = int(np.log2(self.resolution))
        self.image_channels = image_channels
        self.label_dim = label_dim
        self.fused_scale = fused_scale
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.mbstd_groups = mbstd_groups
        self.fmaps_base = fmaps_base
        self.fmaps_max = fmaps_max
        self.eps = eps

        # Level-of-details (used for progressive training).
        self.register_buffer('lod', torch.zeros(()))
        self.pth_to_tf_var_mapping = {'lod': 'lod'}

        for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
            res = 2 ** res_log2
            in_channels = self.get_nf(res)
            out_channels = self.get_nf(res // 2)
            block_idx = self.final_res_log2 - res_log2

            # Input convolution layer for each resolution.
            self.add_module(
                f'input{block_idx}',
                ConvLayer(in_channels=self.image_channels,
                          out_channels=in_channels,
                          kernel_size=1,
                          add_bias=True,
                          downsample=False,
                          fused_scale=False,
                          use_wscale=use_wscale,
                          wscale_gain=wscale_gain,
                          activation_type='lrelu'))
            self.pth_to_tf_var_mapping[f'input{block_idx}.weight'] = (
                f'FromRGB_lod{block_idx}/weight')
            self.pth_to_tf_var_mapping[f'input{block_idx}.bias'] = (
                f'FromRGB_lod{block_idx}/bias')

            # Convolution block for each resolution (except the last one).
            if res != self.init_res:
                self.add_module(
                    f'layer{2 * block_idx}',
                    ConvLayer(in_channels=in_channels,
                              out_channels=in_channels,
                              kernel_size=3,
                              add_bias=True,
                              downsample=False,
                              fused_scale=False,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              activation_type='lrelu'))
                tf_layer0_name = 'Conv0'
                self.add_module(
                    f'layer{2 * block_idx + 1}',
                    ConvLayer(in_channels=in_channels,
                              out_channels=out_channels,
                              kernel_size=3,
                              add_bias=True,
                              downsample=True,
                              fused_scale=fused_scale,
                              use_wscale=use_wscale,
                              wscale_gain=wscale_gain,
                              activation_type='lrelu'))
                tf_layer1_name = 'Conv1_down' if fused_scale else 'Conv1'

            # Convolution block for last resolution.
            else:
                self.mbstd = MiniBatchSTDLayer(groups=mbstd_groups, eps=eps)
                self.add_module(
                    f'layer{2 * block_idx}',
                    ConvLayer(
                        in_channels=in_channels + 1,
                        out_channels=in_channels,
                        kernel_size=3,
                        add_bias=True,
                        downsample=False,
                        fused_scale=False,
                        use_wscale=use_wscale,
                        wscale_gain=wscale_gain,
                        activation_type='lrelu'))
                tf_layer0_name = 'Conv'
                self.add_module(
                    f'layer{2 * block_idx + 1}',
                    DenseLayer(in_channels=in_channels * res * res,
                               out_channels=out_channels,
                               add_bias=True,
                               use_wscale=use_wscale,
                               wscale_gain=wscale_gain,
                               activation_type='lrelu'))
                tf_layer1_name = 'Dense0'

            self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = (
                f'{res}x{res}/{tf_layer0_name}/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = (
                f'{res}x{res}/{tf_layer0_name}/bias')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = (
                f'{res}x{res}/{tf_layer1_name}/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = (
                f'{res}x{res}/{tf_layer1_name}/bias')

        # Final dense layer.
        self.output = DenseLayer(in_channels=out_channels,
                                 out_channels=1 + self.label_dim,
                                 add_bias=True,
                                 use_wscale=self.use_wscale,
                                 wscale_gain=1.0,
                                 activation_type='linear')
        self.pth_to_tf_var_mapping['output.weight'] = (
            f'{res}x{res}/Dense1/weight')
        self.pth_to_tf_var_mapping['output.bias'] = (
            f'{res}x{res}/Dense1/bias')

    def get_nf(self, res):
        """Gets number of feature maps according to the given resolution."""
        return min(self.fmaps_base // res, self.fmaps_max)

    def forward(self, image, lod=None):
        expected_shape = (self.image_channels, self.resolution, self.resolution)
        if image.ndim != 4 or image.shape[1:] != expected_shape:
            raise ValueError(f'The input tensor should be with shape '
                             f'[batch_size, channel, height, width], where '
                             f'`channel` equals to {self.image_channels}, '
                             f'`height`, `width` equal to {self.resolution}!\n'
                             f'But `{image.shape}` is received!')

        lod = self.lod.item() if lod is None else lod
        if lod + self.init_res_log2 > self.final_res_log2:
            raise ValueError(f'Maximum level-of-details (lod) is '
                             f'{self.final_res_log2 - self.init_res_log2}, '
                             f'but `{lod}` is received!')

        lod = self.lod.item()
        for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
            block_idx = current_lod = self.final_res_log2 - res_log2
            if current_lod <= lod < current_lod + 1:
                x = getattr(self, f'input{block_idx}')(image)
            elif current_lod - 1 < lod < current_lod:
                alpha = lod - np.floor(lod)
                y = getattr(self, f'input{block_idx}')(image)
                x = y * alpha + x * (1 - alpha)
            if lod < current_lod + 1:
                if res_log2 == self.init_res_log2:
                    x = self.mbstd(x)
                x = getattr(self, f'layer{2 * block_idx}')(x)
                x = getattr(self, f'layer{2 * block_idx + 1}')(x)
            if lod > current_lod:
                image = F.avg_pool2d(
                    image, kernel_size=2, stride=2, padding=0)
        x = self.output(x)

        return {'score': x}


class MiniBatchSTDLayer(nn.Module):
    """Implements the minibatch standard deviation layer."""

    def __init__(self, groups, eps):
        super().__init__()
        self.groups = groups
        self.eps = eps

    def extra_repr(self):
        return f'groups={self.groups}, epsilon={self.eps}'

    def forward(self, x):
        if self.groups <= 1:
            return x

        N, C, H, W = x.shape
        G = min(self.groups, N)  # Number of groups.

        y = x.reshape(G, -1, C, H, W)            # [GnCHW]
        y = y - y.mean(dim=0)                    # [GnCHW]
        y = y.square().mean(dim=0)               # [nCHW]
        y = (y + self.eps).sqrt()                # [nCHW]
        y = y.mean(dim=(1, 2, 3), keepdim=True)  # [n111]
        y = y.repeat(G, 1, H, W)                 # [N1HW]
        x = torch.cat([x, y], dim=1)             # [N(C+1)HW]

        return x


class DownsamplingLayer(nn.Module):
    """Implements the downsampling layer.

    Basically, this layer can be used to downsample feature maps with average
    pooling.
    """

    def __init__(self, scale_factor):
        super().__init__()
        self.scale_factor = scale_factor

    def extra_repr(self):
        return f'factor={self.scale_factor}'

    def forward(self, x):
        if self.scale_factor <= 1:
            return x
        return F.avg_pool2d(x,
                            kernel_size=self.scale_factor,
                            stride=self.scale_factor,
                            padding=0)


class ConvLayer(nn.Module):
    """Implements the convolutional layer.

    Basically, this layer executes convolution, activation, and downsampling (if
    needed) in sequence.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 add_bias,
                 downsample,
                 fused_scale,
                 use_wscale,
                 wscale_gain,
                 activation_type):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            kernel_size: Size of the convolutional kernels.
            add_bias: Whether to add bias onto the convolutional result.
            downsample: Whether to downsample the result after convolution.
            fused_scale: Whether to fused `conv2d` and `downsample` together,
                resulting in `conv2d` with strides.
            use_wscale: Whether to use weight scaling.
            wscale_gain: Gain factor for weight scaling.
            activation_type: Type of activation.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.add_bias = add_bias
        self.downsample = downsample
        self.fused_scale = fused_scale
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.activation_type = activation_type

        if downsample and not fused_scale:
            self.down = DownsamplingLayer(scale_factor=2)
        else:
            self.down = nn.Identity()

        if downsample and fused_scale:
            self.use_stride = True
            self.stride = 2
            self.padding = 1
        else:
            self.use_stride = False
            self.stride = 1
            self.padding = kernel_size // 2

        weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
        fan_in = kernel_size * kernel_size * in_channels
        wscale = wscale_gain / np.sqrt(fan_in)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape))
            self.wscale = wscale
        else:
            self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale)
            self.wscale = 1.0

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None

        assert activation_type in ['linear', 'relu', 'lrelu']

    def extra_repr(self):
        return (f'in_ch={self.in_channels}, '
                f'out_ch={self.out_channels}, '
                f'ksize={self.kernel_size}, '
                f'wscale_gain={self.wscale_gain:.3f}, '
                f'bias={self.add_bias}, '
                f'downsample={self.scale_factor}, '
                f'fused_scale={self.fused_scale}, '
                f'act={self.activation_type}')

    def forward(self, x):
        weight = self.weight
        if self.wscale != 1.0:
            weight = weight * self.wscale

        if self.use_stride:
            weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0)
            weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] +
                      weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1]) * 0.25
        x = F.conv2d(x,
                     weight=weight,
                     bias=self.bias,
                     stride=self.stride,
                     padding=self.padding)

        if self.activation_type == 'linear':
            pass
        elif self.activation_type == 'relu':
            x = F.relu(x, inplace=True)
        elif self.activation_type == 'lrelu':
            x = F.leaky_relu(x, negative_slope=0.2, inplace=True)
        else:
            raise NotImplementedError(f'Not implemented activation type '
                                      f'`{self.activation_type}`!')
        x = self.down(x)

        return x


class DenseLayer(nn.Module):
    """Implements the dense layer."""

    def __init__(self,
                 in_channels,
                 out_channels,
                 add_bias,
                 use_wscale,
                 wscale_gain,
                 activation_type):
        """Initializes with layer settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            add_bias: Whether to add bias onto the fully-connected result.
            use_wscale: Whether to use weight scaling.
            wscale_gain: Gain factor for weight scaling.
            activation_type: Type of activation.

        Raises:
            NotImplementedError: If the `activation_type` is not supported.
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.add_bias = add_bias
        self.use_wscale = use_wscale
        self.wscale_gain = wscale_gain
        self.activation_type = activation_type

        weight_shape = (out_channels, in_channels)
        wscale = wscale_gain / np.sqrt(in_channels)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape))
            self.wscale = wscale
        else:
            self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale)
            self.wscale = 1.0

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None

        assert activation_type in ['linear', 'relu', 'lrelu']

    def forward(self, x):
        if x.ndim != 2:
            x = x.flatten(start_dim=1)

        weight = self.weight
        if self.wscale != 1.0:
            weight = weight * self.wscale

        x = F.linear(x, weight=weight, bias=self.bias)

        if self.activation_type == 'linear':
            pass
        elif self.activation_type == 'relu':
            x = F.relu(x, inplace=True)
        elif self.activation_type == 'lrelu':
            x = F.leaky_relu(x, negative_slope=0.2, inplace=True)
        else:
            raise NotImplementedError(f'Not implemented activation type '
                                      f'`{self.activation_type}`!')

        return x

# pylint: enable=missing-function-docstring