File size: 4,354 Bytes
d7b89b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch.nn as nn
import torch
import torch.nn.functional as F
from util.GDANet_util import local_operator, GDM, SGCAM


class GDANET(nn.Module):
    def __init__(self):
        super(GDANET, self).__init__()

        self.bn1 = nn.BatchNorm2d(64, momentum=0.1)
        self.bn11 = nn.BatchNorm2d(64, momentum=0.1)
        self.bn12 = nn.BatchNorm1d(64, momentum=0.1)

        self.bn2 = nn.BatchNorm2d(64, momentum=0.1)
        self.bn21 = nn.BatchNorm2d(64, momentum=0.1)
        self.bn22 = nn.BatchNorm1d(64, momentum=0.1)

        self.bn3 = nn.BatchNorm2d(128, momentum=0.1)
        self.bn31 = nn.BatchNorm2d(128, momentum=0.1)
        self.bn32 = nn.BatchNorm1d(128, momentum=0.1)

        self.bn4 = nn.BatchNorm1d(512, momentum=0.1)

        self.conv1 = nn.Sequential(nn.Conv2d(6, 64, kernel_size=1, bias=True),
                                   self.bn1)
        self.conv11 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1, bias=True),
                                    self.bn11)
        self.conv12 = nn.Sequential(nn.Conv1d(64 * 2, 64, kernel_size=1, bias=True),
                                    self.bn12)

        self.conv2 = nn.Sequential(nn.Conv2d(67 * 2, 64, kernel_size=1, bias=True),
                                   self.bn2)
        self.conv21 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1, bias=True),
                                    self.bn21)
        self.conv22 = nn.Sequential(nn.Conv1d(64 * 2, 64, kernel_size=1, bias=True),
                                    self.bn22)

        self.conv3 = nn.Sequential(nn.Conv2d(131 * 2, 128, kernel_size=1, bias=True),
                                   self.bn3)
        self.conv31 = nn.Sequential(nn.Conv2d(128, 128, kernel_size=1, bias=True),
                                    self.bn31)
        self.conv32 = nn.Sequential(nn.Conv1d(128, 128, kernel_size=1, bias=True),
                                    self.bn32)

        self.conv4 = nn.Sequential(nn.Conv1d(256, 512, kernel_size=1, bias=True),
                                   self.bn4)

        self.SGCAM_1s = SGCAM(64)
        self.SGCAM_1g = SGCAM(64)
        self.SGCAM_2s = SGCAM(64)
        self.SGCAM_2g = SGCAM(64)

        self.linear1 = nn.Linear(1024, 512, bias=True)
        self.bn6 = nn.BatchNorm1d(512)
        self.dp1 = nn.Dropout(p=0.4)
        self.linear2 = nn.Linear(512, 256, bias=True)
        self.bn7 = nn.BatchNorm1d(256)
        self.dp2 = nn.Dropout(p=0.4)
        self.linear3 = nn.Linear(256, 40, bias=True)

    def forward(self, x):
        B, C, N = x.size()
        ###############
        """block 1"""
        # Local operator:
        x1 = local_operator(x, k=30)
        x1 = F.relu(self.conv1(x1))
        x1 = F.relu(self.conv11(x1))
        x1 = x1.max(dim=-1, keepdim=False)[0]

        # Geometry-Disentangle Module:
        x1s, x1g = GDM(x1, M=256)

        # Sharp-Gentle Complementary Attention Module:
        y1s = self.SGCAM_1s(x1, x1s.transpose(2, 1))
        y1g = self.SGCAM_1g(x1, x1g.transpose(2, 1))
        z1 = torch.cat([y1s, y1g], 1)
        z1 = F.relu(self.conv12(z1))
        ###############
        """block 2"""
        x1t = torch.cat((x, z1), dim=1)
        x2 = local_operator(x1t, k=30)
        x2 = F.relu(self.conv2(x2))
        x2 = F.relu(self.conv21(x2))
        x2 = x2.max(dim=-1, keepdim=False)[0]

        x2s, x2g = GDM(x2, M=256)

        y2s = self.SGCAM_2s(x2, x2s.transpose(2, 1))
        y2g = self.SGCAM_2g(x2, x2g.transpose(2, 1))
        z2 = torch.cat([y2s, y2g], 1)
        z2 = F.relu(self.conv22(z2))
        ###############
        x2t = torch.cat((x1t, z2), dim=1)
        x3 = local_operator(x2t, k=30)
        x3 = F.relu(self.conv3(x3))
        x3 = F.relu(self.conv31(x3))
        x3 = x3.max(dim=-1, keepdim=False)[0]
        z3 = F.relu(self.conv32(x3))
        ###############
        x = torch.cat((z1, z2, z3), dim=1)
        x = F.relu(self.conv4(x))
        x11 = F.adaptive_max_pool1d(x, 1).view(B, -1)
        x22 = F.adaptive_avg_pool1d(x, 1).view(B, -1)
        x = torch.cat((x11, x22), 1)

        x = F.relu(self.bn6(self.linear1(x)))
        x = self.dp1(x)
        x = F.relu(self.bn7(self.linear2(x)))
        x = self.dp2(x)
        x = self.linear3(x)
        return x