Spaces:
Sleeping
Sleeping
File size: 16,919 Bytes
e11256b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
"""
Transcriber Module
------------------
This module provides the Transcriber class, a comprehensive tool for working with Whisper models.
The Transcriber class offers functionalities such as loading different Whisper models, transcribing audio files,
and saving transcriptions to text files. It acts as an interface between various Whisper models and the user,
simplifying the process of audio transcription.
Main Features:
- Loading different sizes and versions of Whisper models.
- Transcribing audio in various formats including str, Tensor, and nparray.
- Saving the transcriptions to the specified paths.
- Adaptable to various language specifications.
- Options to control the verbosity of the transcription process.
Constants:
WHISPER_DEFAULT_PATH: Default path for downloading and loading Whisper models.
Usage:
>>> from your_package import Transcriber
>>> transcriber = Transcriber.load_model(model="medium")
>>> transcript = transcriber.transcribe(audio="path/to/audio.wav")
>>> transcriber.save_transcript(transcript, "path/to/save.txt")
"""
from whisper import Whisper
from whisper import load_model as whisper_load_model
from whisper.tokenizer import TO_LANGUAGE_CODE
from faster_whisper import WhisperModel as FasterWhisperModel
from faster_whisper.tokenizer import _LANGUAGE_CODES as FASTER_WHISPER_LANGUAGE_CODES
from typing import TypeVar, Union, Optional
from torch import Tensor, device
from numpy import ndarray
from inspect import signature
from abc import abstractmethod
import warnings
from .misc import WHISPER_DEFAULT_PATH, SCRAIBE_TORCH_DEVICE, SCRAIBE_NUM_THREADS
whisper = TypeVar('whisper')
class Transcriber:
"""
Transcriber Class
-----------------
The Transcriber class serves as a wrapper around Whisper models for efficient audio
transcription. By encapsulating the intricacies of loading models, processing audio,
and saving transcripts, it offers an easy-to-use interface
for users to transcribe audio files.
Attributes:
model (whisper): The Whisper model used for transcription.
Methods:
transcribe: Transcribes the given audio file.
save_transcript: Saves the transcript to a file.
load_model: Loads a specific Whisper model.
_get_whisper_kwargs: Private method to get valid keyword arguments for the whisper model.
Examples:
>>> transcriber = Transcriber.load_model(model="medium")
>>> transcript = transcriber.transcribe(audio="path/to/audio.wav")
>>> transcriber.save_transcript(transcript, "path/to/save.txt")
Note:
The class supports various sizes and versions of Whisper models. Please refer to
the load_model method for available options.
"""
def __init__(self, model: whisper, model_name: str) -> None:
"""
Initialize the Transcriber class with a Whisper model.
Args:
model (whisper): The Whisper model to use for transcription.
model_name (str): The name of the model.
"""
self.model = model
self.model_name = model_name
@abstractmethod
def transcribe(self, audio: Union[str, Tensor, ndarray],
*args, **kwargs) -> str:
"""
Transcribe an audio file.
Args:
audio (Union[str, Tensor, nparray]): The audio file to transcribe.
*args: Additional arguments.
**kwargs: Additional keyword arguments,
such as the language of the audio file.
Returns:
str: The transcript as a string.
"""
pass
@staticmethod
def save_transcript(transcript: str, save_path: str) -> None:
"""
Save a transcript to a file.
Args:
transcript (str): The transcript as a string.
save_path (str): The path to save the transcript.
Returns:
None
"""
with open(save_path, 'w') as f:
f.write(transcript)
print(f'Transcript saved to {save_path}')
@classmethod
@abstractmethod
def load_model(cls,
model: str = "large-v3",
whisper_type: str = 'whisper',
download_root: str = WHISPER_DEFAULT_PATH,
device: Optional[Union[str, device]] = SCRAIBE_TORCH_DEVICE,
in_memory: bool = False,
*args, **kwargs
) -> None:
"""
Load whisper model.
Args:
model (str): Whisper model. Available models include:
- 'tiny.en'
- 'tiny'
- 'base.en'
- 'base'
- 'small.en'
- 'small'
- 'medium.en'
- 'medium'
- 'large-v1'
- 'large-v2'
- 'large-v3'
- 'large'
whisper_type (str):
Type of whisper model to load. "whisper" or "faster-whisper".
download_root (str, optional): Path to download the model.
Defaults to WHISPER_DEFAULT_PATH.
device (Optional[Union[str, torch.device]], optional):
Device to load model on. Defaults to None.
in_memory (bool, optional): Whether to load model in memory.
Defaults to False.
args: Additional arguments only to avoid errors.
kwargs: Additional keyword arguments only to avoid errors.
Returns:
None: abscract method.
"""
pass
@staticmethod
def _get_whisper_kwargs(**kwargs) -> dict:
"""
Get kwargs for whisper model. Ensure that kwargs are valid.
Returns:
dict: Keyword arguments for whisper model.
"""
pass
def __repr__(self) -> str:
return f"Transcriber(model_name={self.model_name}, model={self.model})"
class WhisperTranscriber(Transcriber):
def __init__(self, model: whisper, model_name: str) -> None:
super().__init__(model, model_name)
def transcribe(self, audio: Union[str, Tensor, ndarray],
*args, **kwargs) -> str:
"""
Transcribe an audio file.
Args:
audio (Union[str, Tensor, nparray]): The audio file to transcribe.
*args: Additional arguments.
**kwargs: Additional keyword arguments,
such as the language of the audio file.
Returns:
str: The transcript as a string.
"""
kwargs = self._get_whisper_kwargs(**kwargs)
if not kwargs.get("verbose"):
kwargs["verbose"] = None
result = self.model.transcribe(audio, *args, **kwargs)
return result["text"]
@classmethod
def load_model(cls,
model: str = "large-v3",
download_root: str = WHISPER_DEFAULT_PATH,
device: Optional[Union[str, device]] = SCRAIBE_TORCH_DEVICE,
in_memory: bool = False,
*args, **kwargs
) -> 'WhisperTranscriber':
"""
Load whisper model.
Args:
model (str): Whisper model. Available models include:
- 'tiny.en'
- 'tiny'
- 'base.en'
- 'base'
- 'small.en'
- 'small'
- 'medium.en'
- 'medium'
- 'large-v1'
- 'large-v2'
- 'large-v3'
- 'large'
download_root (str, optional): Path to download the model.
Defaults to WHISPER_DEFAULT_PATH.
device (Optional[Union[str, torch.device]], optional):
Device to load model on. Defaults to None.
in_memory (bool, optional): Whether to load model in memory.
Defaults to False.
args: Additional arguments only to avoid errors.
kwargs: Additional keyword arguments only to avoid errors.
Returns:
Transcriber: A Transcriber object initialized with the specified model.
"""
_model = whisper_load_model(model, download_root=download_root,
device=device, in_memory=in_memory)
return cls(_model, model_name=model)
@staticmethod
def _get_whisper_kwargs(**kwargs) -> dict:
"""
Get kwargs for whisper model. Ensure that kwargs are valid.
Returns:
dict: Keyword arguments for whisper model.
"""
# _possible_kwargs = WhisperModel.transcribe.__code__.co_varnames
_possible_kwargs = signature(Whisper.transcribe).parameters.keys()
whisper_kwargs = {k: v for k,
v in kwargs.items() if k in _possible_kwargs}
if (task := kwargs.get("task")):
whisper_kwargs["task"] = task
if (language := kwargs.get("language")):
whisper_kwargs["language"] = language
return whisper_kwargs
def __repr__(self) -> str:
return f"WhisperTranscriber(model_name={self.model_name}, model={self.model})"
class FasterWhisperTranscriber(Transcriber):
def __init__(self, model: whisper, model_name: str) -> None:
super().__init__(model, model_name)
def transcribe(self, audio: Union[str, Tensor, ndarray],
*args, **kwargs) -> str:
"""
Transcribe an audio file.
Args:
audio (Union[str, Tensor, nparray]): The audio file to transcribe.
*args: Additional arguments.
**kwargs: Additional keyword arguments,
such as the language of the audio file.
Returns:
str: The transcript as a string.
"""
kwargs = self._get_whisper_kwargs(**kwargs)
if isinstance(audio, Tensor):
audio = audio.cpu().numpy()
result, _ = self.model.transcribe(audio, *args, **kwargs)
text = ""
for seg in result:
text += seg.text
return text
@classmethod
def load_model(cls,
model: str = "large-v3",
download_root: str = WHISPER_DEFAULT_PATH,
device: Optional[Union[str, device]] = SCRAIBE_TORCH_DEVICE,
*args, **kwargs
) -> 'FasterWhisperModel':
"""
Load whisper model.
Args:
model (str): Whisper model. Available models include:
- 'tiny.en'
- 'tiny'
- 'base.en'
- 'base'
- 'small.en'
- 'small'
- 'medium.en'
- 'medium'
- 'large-v1'
- 'large-v2'
- 'large-v3'
- 'large'
download_root (str, optional): Path to download the model.
Defaults to WHISPER_DEFAULT_PATH.
device (Optional[Union[str, torch.device]], optional):
Device to load model on. Defaults to SCRAIBE_TORCH_DEVICE.
in_memory (bool, optional): Whether to load model in memory.
Defaults to False.
args: Additional arguments only to avoid errors.
kwargs: Additional keyword arguments only to avoid errors.
Returns:
Transcriber: A Transcriber object initialized with the specified model.
"""
if not isinstance(device, str):
device = str(device)
compute_type = kwargs.get('compute_type', 'float16')
if device == 'cpu' and compute_type == 'float16':
warnings.warn(f'Compute type {compute_type} not compatible with '
f'device {device}! Changing compute type to int8.')
compute_type = 'int8'
_model = FasterWhisperModel(model, download_root=download_root,
device=device, compute_type=compute_type,
cpu_threads=SCRAIBE_NUM_THREADS)
return cls(_model, model_name=model)
@staticmethod
def _get_whisper_kwargs(**kwargs) -> dict:
"""
Get kwargs for whisper model. Ensure that kwargs are valid.
Returns:
dict: Keyword arguments for whisper model.
"""
# _possible_kwargs = WhisperModel.transcribe.__code__.co_varnames
_possible_kwargs = signature(FasterWhisperModel.transcribe).parameters.keys()
whisper_kwargs = {k: v for k,
v in kwargs.items() if k in _possible_kwargs}
if (task := kwargs.get("task")):
whisper_kwargs["task"] = task
if (language := kwargs.get("language")):
language = FasterWhisperTranscriber.convert_to_language_code(language)
whisper_kwargs["language"] = language
return whisper_kwargs
@staticmethod
def convert_to_language_code(lang : str) -> str:
"""
Load whisper model.
Args:
lang (str): language as code or language name
Returns:
language (str) code of language
"""
# If the input is already in FASTER_WHISPER_LANGUAGE_CODES, return it directly
if lang in FASTER_WHISPER_LANGUAGE_CODES:
return lang
# Normalize the input to lowercase
lang = lang.lower()
# Check if the language name is in the TO_LANGUAGE_CODE mapping
if lang in TO_LANGUAGE_CODE:
return TO_LANGUAGE_CODE[lang]
# If the language is not recognized, raise a ValueError with the available options
available_codes = ', '.join(FASTER_WHISPER_LANGUAGE_CODES)
raise ValueError(f"Language '{lang}' is not a valid language code or name. "
f"Available language codes are: {available_codes}.")
def __repr__(self) -> str:
return f"FasterWhisperTranscriber(model_name={self.model_name}, model={self.model})"
def load_transcriber(model: str = "large-v3",
whisper_type: str = 'whisper',
download_root: str = WHISPER_DEFAULT_PATH,
device: Optional[Union[str, device]] = SCRAIBE_TORCH_DEVICE,
in_memory: bool = False,
*args, **kwargs
) -> Union[WhisperTranscriber, FasterWhisperTranscriber]:
"""
Load whisper model.
Args:
model (str): Whisper model. Available models include:
- 'tiny.en'
- 'tiny'
- 'base.en'
- 'base'
- 'small.en'
- 'small'
- 'medium.en'
- 'medium'
- 'large-v1'
- 'large-v2'
- 'large-v3'
- 'large'
whisper_type (str):
Type of whisper model to load. "whisper" or "faster-whisper".
download_root (str, optional): Path to download the model.
Defaults to WHISPER_DEFAULT_PATH.
device (Optional[Union[str, torch.device]], optional):
Device to load model on. Defaults to SCRAIBE_TORCH_DEVICE.
in_memory (bool, optional): Whether to load model in memory.
Defaults to False.
args: Additional arguments only to avoid errors.
kwargs: Additional keyword arguments only to avoid errors.
Returns:
Union[WhisperTranscriber, FasterWhisperTranscriber]:
One of the Whisper variants as Transcrbier object initialized with the specified model.
"""
if whisper_type.lower() == 'whisper':
_model = WhisperTranscriber.load_model(
model, download_root, device, in_memory, *args, **kwargs)
return _model
elif whisper_type.lower() == 'faster-whisper':
_model = FasterWhisperTranscriber.load_model(
model, download_root, device, *args, **kwargs)
return _model
else:
raise ValueError(f'Model type not recognized, exptected "whisper" '
f'or "faster-whisper", got {whisper_type}.')
|