Spaces:
Sleeping
Sleeping
File size: 12,595 Bytes
e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b 291fcec e11256b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
"""
Diarisation Class
------------------
This class serves as the heart of the speaker diarization system, responsible for identifying
and segmenting individual speakers from a given audio file. It leverages a pretrained model
from pyannote.audio, providing an accessible interface for audio processing tasks such as
speaker separation, and timestamping.
By encapsulating the complexities of the underlying model, it allows for straightforward
integration into various applications, ranging from transcription services to voice assistants.
Available Classes:
- Diariser: Main class for performing speaker diarization.
Includes methods for loading models, processing audio files,
and formatting the diarization output.
Constants:
- TOKEN_PATH (str): Path to the Pyannote token.
- PYANNOTE_DEFAULT_PATH (str): Default path to Pyannote models.
- PYANNOTE_DEFAULT_CONFIG (str): Default configuration for Pyannote models.
Usage:
from .diarisation import Diariser
model = Diariser.load_model(model="path/to/model/config.yaml")
diarisation_output = model.diarization("path/to/audiofile.wav")
"""
import warnings
import os
import yaml
from pathlib import Path
from typing import TypeVar, Union
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
from torch import Tensor
from torch import device as torch_device
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError
from .misc import PYANNOTE_DEFAULT_PATH, PYANNOTE_DEFAULT_CONFIG, SCRAIBE_TORCH_DEVICE
Annotation = TypeVar('Annotation')
TOKEN_PATH = os.path.join(os.path.dirname(
os.path.realpath(__file__)), '.pyannotetoken')
class Diariser:
"""
Handles the diarization process of an audio file using a pretrained model
from pyannote.audio. Diarization is the task of determining "who spoke when."
Args:
model: The pretrained model to use for diarization.
"""
def __init__(self, model) -> None:
self.model = model
def diarization(self, audiofile: Union[str, Tensor, dict],
*args, **kwargs) -> Annotation:
"""
Perform speaker diarization on the provided audio file,
effectively separating different speakers
and providing a timestamp for each segment.
Args:
audiofile: The path to the audio file or a torch.Tensor
containing the audio data.
args: Additional arguments for the diarization model.
kwargs: Additional keyword arguments for the diarization model.
Returns:
dict: A dictionary containing speaker names,
segments, and other information related
to the diarization process.
"""
kwargs = self._get_diarisation_kwargs(**kwargs)
diarization = self.model(audiofile, *args, **kwargs)
out = self.format_diarization_output(diarization)
return out
# @staticmethod
# def format_diarization_output(dia: Annotation) -> dict:
# """
# Formats the raw diarization output into a more usable structure for this project.
# Args:
# dia: Raw diarization output.
# Returns:
# dict: A structured representation of the diarization, with speaker names
# as keys and a list of tuples representing segments as values.
# """
# dia_list = list(dia.itertracks(yield_label=True))
# diarization_output = {"speakers": [], "segments": []}
# normalized_output = []
# index_start_speaker = 0
# index_end_speaker = 0
# current_speaker = str()
# ###
# # Sometimes two consecutive speakers are the same
# # This loop removes these duplicates
# ###
# if len(dia_list) == 1:
# normalized_output.append([0, 0, dia_list[0][2]])
# else:
# for i, (_, _, speaker) in enumerate(dia_list):
# if i == 0:
# current_speaker = speaker
# if speaker != current_speaker:
# index_end_speaker = i - 1
# normalized_output.append([index_start_speaker,
# index_end_speaker,
# current_speaker])
# index_start_speaker = i
# current_speaker = speaker
# if i == len(dia_list) - 1:
# index_end_speaker = i
# normalized_output.append([index_start_speaker,
# index_end_speaker,
# current_speaker])
# for outp in normalized_output:
# start = dia_list[outp[0]][0].start
# end = dia_list[outp[1]][0].end
# diarization_output["segments"].append([start, end])
# diarization_output["speakers"].append(outp[2])
# return diarization_output
@staticmethod
def format_diarization_output(dia: Annotation) -> dict:
"""
Formats the raw diarization output into a more usable structure for this project,
without combining consecutive segments of the same speaker.
Args:
dia: Raw diarization output.
Returns:
dict: A structured representation of the diarization, with speaker names
as keys and a list of tuples representing segments as values.
"""
dia_list = list(dia.itertracks(yield_label=True))
diarization_output = {"speakers": [], "segments": []}
for segment, _, speaker in dia_list:
start = segment.start
end = segment.end
diarization_output["segments"].append([start, end])
diarization_output["speakers"].append(speaker)
return diarization_output
@staticmethod
def _get_token():
"""
Retrieves the Huggingface token from a local file. This token is required
for accessing certain online resources.
Raises:
ValueError: If the token is not found.
Returns:
str: The Huggingface token.
"""
if os.path.exists(TOKEN_PATH):
with open(TOKEN_PATH, 'r', encoding="utf-8") as file:
token = file.read()
else:
raise ValueError('No token found.'
'Please create a token at https://huggingface.co/settings/token'
f'and save it in a file called {TOKEN_PATH}')
return token
@staticmethod
def _save_token(token):
"""
Saves the provided Huggingface token to a local file. This facilitates future
access to online resources without needing to repeatedly authenticate.
Args:
token: The Huggingface token to save.
"""
with open(TOKEN_PATH, 'w', encoding="utf-8") as file:
file.write(token)
@classmethod
def load_model(cls,
model: str = PYANNOTE_DEFAULT_CONFIG,
use_auth_token: str = None,
cache_token: bool = False,
cache_dir: Union[Path, str] = PYANNOTE_DEFAULT_PATH,
hparams_file: Union[str, Path] = None,
device: str = SCRAIBE_TORCH_DEVICE,
) -> Pipeline:
"""
Loads a pretrained model from pyannote.audio,
either from a local cache or some online repository.
Args:
model: Path or identifier for the pyannote model.
default: '/home/[user]/.cache/torch/models/pyannote/config.yaml'
or one of 'jaikinator/scraibe', 'pyannote/speaker-diarization-3.1'
token: Optional HUGGINGFACE_TOKEN for authenticated access.
cache_token: Whether to cache the token locally for future use.
cache_dir: Directory for caching models.
hparams_file: Path to a YAML file containing hyperparameters.
device: Device to load the model on.
args: Additional arguments only to avoid errors.
kwargs: Additional keyword arguments only to avoid errors.
Returns:
Pipeline: A pyannote.audio Pipeline object, encapsulating the loaded model.
"""
if isinstance(model, str) and os.path.exists(model):
# check if model can be found locally nearby the config file
with open(model, 'r') as file:
config = yaml.safe_load(file)
path_to_model = config['pipeline']['params']['segmentation']
if not os.path.exists(path_to_model):
warnings.warn(f"Model not found at {path_to_model}. "
"Trying to find it nearby the config file.")
pwd = model.split("/")[:-1]
pwd = "/".join(pwd)
path_to_model = os.path.join(pwd, "pytorch_model.bin")
if not os.path.exists(path_to_model):
warnings.warn(f"Model not found at {path_to_model}. \
'Trying to find it nearby .bin files instead.")
warnings.warn(
'Searching for nearby files in a folder path is '
'deprecated and will be removed in future versions.',
category=DeprecationWarning)
# list elementes with the ending .bin
bin_files = [f for f in os.listdir(
pwd) if f.endswith(".bin")]
if len(bin_files) == 1:
path_to_model = os.path.join(pwd, bin_files[0])
else:
warnings.warn("Found more than one .bin file. "
"or none. Please specify the path to the model "
"or setup a huggingface token.")
raise FileNotFoundError
warnings.warn(
f"Found model at {path_to_model} overwriting config file.")
config['pipeline']['params']['segmentation'] = path_to_model
with open(model, 'w') as file:
yaml.dump(config, file)
elif isinstance(model, tuple):
try:
_model = model[0]
HfApi().model_info(_model)
model = _model
use_auth_token = None
except RepositoryNotFoundError:
print(f'{model[0]} not found on Huggingface, \
trying {model[1]}')
_model = model[1]
HfApi().model_info(_model)
model = _model
if cache_token and use_auth_token is not None:
cls._save_token(use_auth_token)
if use_auth_token is None:
use_auth_token = cls._get_token()
else:
raise FileNotFoundError(
f'No local model or directory found at {model}.')
_model = Pipeline.from_pretrained(model,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
hparams_file=hparams_file,)
if _model is None:
raise ValueError('Unable to load model either from local cache'
'or from huggingface.co models. Please check your token'
'or your local model path')
# torch_device is renamed from torch.device to avoid name conflict
_model = _model.to(torch_device(device))
return cls(_model)
@staticmethod
def _get_diarisation_kwargs(**kwargs) -> dict:
"""
Validates and extracts the keyword arguments for the pyannote diarization model.
Ensures that the provided keyword arguments match the expected parameters,
filtering out any invalid or unnecessary arguments.
Returns:
dict: A dictionary containing the validated keyword arguments.
"""
_possible_kwargs = SpeakerDiarization.apply.__code__.co_varnames
diarisation_kwargs = {k: v for k,
v in kwargs.items() if k in _possible_kwargs}
return diarisation_kwargs
def __repr__(self):
return f"Diarisation(model={self.model})"
|