Spaces:
Runtime error
Runtime error
File size: 1,499 Bytes
a4e1383 457d014 a4e1383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
import gradio as gr
import json
from transformers import pipeline
# Use a pipeline with the specified model for translation
text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16)
# Load the JSON data from the file
with open('language.json', 'r') as file:
language_data = json.load(file)
def get_FLORES_code_from_language(language):
for entry in language_data:
if entry['Language'].lower() == language.lower():
return entry['FLORES-200 code']
return None
def translate_text(text, source_language, destination_language):
src_code = get_FLORES_code_from_language(source_language)
dest_code = get_FLORES_code_from_language(destination_language)
translation = text_translator(text, src_lang=src_code, tgt_lang=dest_code)
return translation[0]["translation_text"]
gr.close_all()
# Define the language options based on the JSON file
language_options = [entry['Language'] for entry in language_data]
demo = gr.Interface(
fn=translate_text,
inputs=[
gr.Textbox(label="Input text to translate", lines=6),
gr.Dropdown(language_options, label="Select Source Language"),
gr.Dropdown(language_options, label="Select Destination Language")
],
outputs=[gr.Textbox(label="Translated text", lines=4)],
title="Multi-language Translator",
description="THIS APPLICATION WILL BE USED TO TRANSLATE TEXT BETWEEN MULTIPLE LANGUAGES."
)
demo.launch()
|