File size: 13,873 Bytes
9080570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from typing import Tuple, List
from torch import Tensor

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.layers.torch import Rearrange


######################
# Meta Architecture
######################
class SeemoRe(nn.Module):
    def __init__(self,
                 scale: int = 4,
                 in_chans: int = 3,
                 num_experts: int = 6,
                 num_layers: int = 6,
                 embedding_dim: int = 64,
                 img_range: float = 1.0,
                 use_shuffle: bool = False,
                 global_kernel_size: int = 11,
                 recursive: int = 2,
                 lr_space: int = 1,
                 topk: int = 2,):
        super().__init__()
        self.scale = scale
        self.num_in_channels = in_chans
        self.num_out_channels = in_chans
        self.img_range = img_range
        
        rgb_mean = (0.4488, 0.4371, 0.4040)
        self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        
        
        # -- SHALLOW FEATURES --
        self.conv_1 = nn.Conv2d(self.num_in_channels, embedding_dim, kernel_size=3, padding=1)
        
        # -- DEEP FEATURES --
        self.body = nn.ModuleList(
            [ResGroup(in_ch=embedding_dim, 
                       num_experts=num_experts, 
                       use_shuffle=use_shuffle,
                       topk=topk,
                       lr_space=lr_space,
                       recursive=recursive,
                       global_kernel_size=global_kernel_size) for i in range(num_layers)]
        )
        
        # -- UPSCALE --
        self.norm = LayerNorm(embedding_dim, data_format='channels_first')
        self.conv_2 = nn.Conv2d(embedding_dim, embedding_dim, kernel_size=3, padding=1)
        self.upsampler = nn.Sequential(
            nn.Conv2d(embedding_dim, (scale**2) * self.num_out_channels, kernel_size=3, padding=1),
            nn.PixelShuffle(scale)
        )
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range
        
        # -- SHALLOW FEATURES --
        x = self.conv_1(x)
        res = x
        
        # -- DEEP FEATURES --
        for idx, layer in enumerate(self.body):
            x = layer(x)

        x = self.norm(x)
                
        # -- HR IMAGE RECONSTRUCTION --
        x = self.conv_2(x) + res
        x = self.upsampler(x)

        x = x / self.img_range + self.mean
        return x
    
    
    
#############################
# Components
#############################    
class ResGroup(nn.Module):
    def __init__(self,
                 in_ch: int,
                 num_experts: int,
                 global_kernel_size: int = 11,
                 lr_space: int = 1,
                 topk: int = 2,
                 recursive: int = 2,
                 use_shuffle: bool = False):
        super().__init__()
        
        self.local_block = RME(in_ch=in_ch, 
                               num_experts=num_experts, 
                               use_shuffle=use_shuffle, 
                               lr_space=lr_space, 
                               topk=topk, 
                               recursive=recursive)
        self.global_block = SME(in_ch=in_ch, 
                                kernel_size=global_kernel_size)
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.local_block(x)
        x = self.global_block(x)
        return x



#############################
# Global Block
#############################
class SME(nn.Module):
    def __init__(self,
                 in_ch: int,
                 kernel_size: int = 11):
        super().__init__()
        
        self.norm_1 = LayerNorm(in_ch, data_format='channels_first')
        self.block = StripedConvFormer(in_ch=in_ch, kernel_size=kernel_size)
    
        self.norm_2 = LayerNorm(in_ch, data_format='channels_first')
        self.ffn = GatedFFN(in_ch, mlp_ratio=2, kernel_size=3, act_layer=nn.GELU())
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.block(self.norm_1(x)) + x
        x = self.ffn(self.norm_2(x)) + x
        return x

    
    

class StripedConvFormer(nn.Module):
    def __init__(self,
                 in_ch: int,
                 kernel_size: int):
        super().__init__()
        self.in_ch = in_ch
        self.kernel_size = kernel_size
        self.padding = kernel_size // 2
        
        self.proj = nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0)
        self.to_qv = nn.Sequential(
            nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, padding=0),
            nn.GELU(),
        )

        self.attn = StripedConv2d(in_ch, kernel_size=kernel_size, depthwise=True)
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        q, v = self.to_qv(x).chunk(2, dim=1)
        q = self.attn(q)
        x = self.proj(q * v)
        return x
    
    
    
#############################
# Local Blocks
#############################
class RME(nn.Module):
    def __init__(self,
                 in_ch: int,
                 num_experts: int,
                 topk: int,
                 lr_space: int = 1,
                 recursive: int = 2,
                 use_shuffle: bool = False,):
        super().__init__()
        
        self.norm_1 = LayerNorm(in_ch, data_format='channels_first')
        self.block = MoEBlock(in_ch=in_ch, num_experts=num_experts, topk=topk, use_shuffle=use_shuffle, recursive=recursive, lr_space=lr_space,)
        
        self.norm_2 = LayerNorm(in_ch, data_format='channels_first')
        self.ffn = GatedFFN(in_ch, mlp_ratio=2, kernel_size=3, act_layer=nn.GELU())
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.block(self.norm_1(x)) + x
        x = self.ffn(self.norm_2(x)) + x
        return x



#################
# MoE Layer
#################
class MoEBlock(nn.Module):
    def __init__(self,
                 in_ch: int,
                 num_experts: int,
                 topk: int,
                 use_shuffle: bool = False,
                 lr_space: str = "linear",
                 recursive: int = 2):
        super().__init__()
        self.use_shuffle = use_shuffle
        self.recursive = recursive
        
        self.conv_1 = nn.Sequential(
            nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1),
            nn.GELU(),
            nn.Conv2d(in_ch, 2*in_ch, kernel_size=1, padding=0)
        )
        
        self.agg_conv = nn.Sequential(
            nn.Conv2d(in_ch, in_ch, kernel_size=4, stride=4, groups=in_ch),
            nn.GELU())
        
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, in_ch, kernel_size=3, stride=1, padding=1, groups=in_ch),
            nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0)
        )
        
        self.conv_2 = nn.Sequential(
            StripedConv2d(in_ch, kernel_size=3, depthwise=True),
            nn.GELU())
        
        if lr_space == "linear":
            grow_func = lambda i: i+2
        elif lr_space == "exp":
            grow_func = lambda i: 2**(i+1)
        elif lr_space == "double":
            grow_func = lambda i: 2*i+2
        else:
            raise NotImplementedError(f"lr_space {lr_space} not implemented")
            
        self.moe_layer = MoELayer(
            experts=[Expert(in_ch=in_ch, low_dim=grow_func(i)) for i in range(num_experts)], # add here multiple of 2 as low_dim
            gate=Router(in_ch=in_ch, num_experts=num_experts),
            num_expert=topk,
        )
        
        self.proj = nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0)
        
    def calibrate(self, x: torch.Tensor) -> torch.Tensor:
        b, c, h, w = x.shape
        res = x
        
        for _ in range(self.recursive):
            x = self.agg_conv(x)
        x = self.conv(x)
        x = F.interpolate(x, size=(h, w), mode="bilinear", align_corners=False)
        return res + x
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.conv_1(x)
        
        if self.use_shuffle:
            x = channel_shuffle(x, groups=2)
        x, k = torch.chunk(x, chunks=2, dim=1)
        
        x = self.conv_2(x)
        k = self.calibrate(k)
        
        x = self.moe_layer(x, k)
        x = self.proj(x)
        return x 
    
    
class MoELayer(nn.Module):
    def __init__(self, experts: List[nn.Module], gate: nn.Module, num_expert: int = 1):
        super().__init__()
        assert len(experts) > 0
        self.experts = nn.ModuleList(experts)
        self.gate = gate
        self.num_expert = num_expert
        
    def forward(self, inputs: torch.Tensor, k: torch.Tensor):
        out = self.gate(inputs)
        weights = F.softmax(out, dim=1, dtype=torch.float).to(inputs.dtype)
        topk_weights, topk_experts = torch.topk(weights, self.num_expert)
        out = inputs.clone()
        
        if self.training:
            exp_weights = torch.zeros_like(weights)
            exp_weights.scatter_(1, topk_experts, weights.gather(1, topk_experts))
            for i, expert in enumerate(self.experts):
                out += expert(inputs, k) * exp_weights[:, i:i+1, None, None]
        else:       
            selected_experts = [self.experts[i] for i in topk_experts.squeeze(dim=0)]
            for i, expert in enumerate(selected_experts):
                out += expert(inputs, k) * topk_weights[:, i:i+1, None, None]
                   
        return out

    

class Expert(nn.Module):
    def __init__(self,
                 in_ch: int,
                 low_dim: int,):
        super().__init__()
        self.conv_1 = nn.Conv2d(in_ch, low_dim, kernel_size=1, padding=0)
        self.conv_2 = nn.Conv2d(in_ch, low_dim, kernel_size=1, padding=0)
        self.conv_3 = nn.Conv2d(low_dim, in_ch, kernel_size=1, padding=0)
                
    def forward(self, x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
        x = self.conv_1(x)
        x = self.conv_2(k) * x # here no more sigmoid
        x = self.conv_3(x)
        return x
    
    
class Router(nn.Module):
    def __init__(self,
                 in_ch: int,
                 num_experts: int):
        super().__init__()
        
        self.body = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Rearrange('b c 1 1 -> b c'),
            nn.Linear(in_ch, num_experts, bias=False),
        )
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.body(x)
        
    
    
#################
# Utilities
#################
class StripedConv2d(nn.Module):
    def __init__(self,
                 in_ch: int,
                 kernel_size: int,
                 depthwise: bool = False):
        super().__init__()
        self.in_ch = in_ch
        self.kernel_size = kernel_size
        self.padding = kernel_size // 2
        
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, in_ch, kernel_size=(1, self.kernel_size), padding=(0, self.padding), groups=in_ch if depthwise else 1),
            nn.Conv2d(in_ch, in_ch, kernel_size=(self.kernel_size, 1), padding=(self.padding, 0), groups=in_ch if depthwise else 1),
        )
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.conv(x)
    
    
    
def channel_shuffle(x, groups=2):
    bat_size, channels, w, h = x.shape
    group_c = channels // groups
    x = x.view(bat_size, groups, group_c, w, h)
    x = torch.transpose(x, 1, 2).contiguous()
    x = x.view(bat_size, -1, w, h)
    return x


class GatedFFN(nn.Module):
    def __init__(self, 
                 in_ch,
                 mlp_ratio,
                 kernel_size,
                 act_layer,):
        super().__init__()
        mlp_ch = in_ch * mlp_ratio
        
        self.fn_1 = nn.Sequential(
            nn.Conv2d(in_ch, mlp_ch, kernel_size=1, padding=0),
            act_layer,
        )
        self.fn_2 = nn.Sequential(
            nn.Conv2d(in_ch, in_ch, kernel_size=1, padding=0),
            act_layer,
        )
        
        self.gate = nn.Conv2d(mlp_ch // 2, mlp_ch // 2, 
                              kernel_size=kernel_size, padding=kernel_size // 2, groups=mlp_ch // 2)

    def feat_decompose(self, x):
        s = x - self.gate(x)
        x = x + self.sigma * s
        return x
    
    def forward(self, x: torch.Tensor):
        x = self.fn_1(x)
        x, gate = torch.chunk(x, 2, dim=1)
        
        gate = self.gate(gate)
        x = x * gate
        
        x = self.fn_2(x)
        return x
    
    
    
class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x