Spaces:
Running
Running
File size: 7,919 Bytes
44c93e2 0b6606d 44c93e2 a47d925 0b6606d 44c93e2 0b6606d 44c93e2 0b6606d a47d925 44c93e2 a47d925 44c93e2 a47d925 44c93e2 a47d925 44c93e2 0b6606d 44c93e2 0b6606d a47d925 0b6606d a47d925 0b6606d a47d925 0b6606d 3f5fedd 0b6606d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Environment settings
import os
os.environ["HF_HOME"] = "/tmp"
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
os.environ["TORCH_HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp"
import io
import re
import math
import numpy as np
import scipy.io.wavfile
import torch
from fastapi import FastAPI, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import VitsModel, AutoTokenizer
app = FastAPI()
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
number_words = {
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
100: "boqol", 1000: "kun"
}
shortcut_map = {
"asc": "asalaamu caleykum",
"wcs": "wacaleykum salaam",
"fcn": "fiican",
"xld": "xaaladda ka waran",
"kwrn": "kawaran",
"scw": "salalaahu caleyhi wa salam",
"alx": "alxamdu lilaahi",
"m.a": "maasha allah",
"sthy": "side tahey",
"sxp": "saaxiib"
}
country_map = {
"somalia": "Soomaaliya",
"ethiopia": "Itoobiya",
"kenya": "Kenya",
"djibouti": "Jabuuti",
"sudan": "Suudaan",
"Yeman": "yemaan",
"uganda": "Ugaandha",
"tanzania": "Tansaaniya",
"egypt": "Masar",
"libya": "Liibiya",
"algeria": "Aljeeriya",
"morocco": "Morooko",
"tunisia": "Tuniisiya",
"eritrea": "Eriteriya",
"malawi": "Malaawi",
"English": "ingiriis",
"Spain": "isbeen",
"Brazil": "baraasiil",
"niger": "Niyjer",
"Italy": "itaaliya",
"united states": "Maraykanka",
"china": "Shiinaha",
"india": "Hindiya",
"russia": "Ruushka",
"Saudi Arabia": "Sucuudi Carabiya",
"germany": "Jarmalka",
"france": "Faransiiska",
"japan": "Jabaan",
"canada": "Kanada",
"australia": "Australia"
}
def number_to_words(number):
number = int(number)
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
elif number < 1000:
hundreds, remainder = divmod(number, 100)
part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
if remainder:
part += " iyo " + number_to_words(remainder)
return part
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
words = [number_to_words(thousands) + " kun" if thousands > 1 else "kun"]
if remainder:
words.append("iyo " + number_to_words(remainder))
return " ".join(words)
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
words = [number_to_words(millions) + " milyan" if millions > 1 else "milyan"]
if remainder:
words.append(number_to_words(remainder))
return " ".join(words)
else:
return str(number)
def normalize_text(text):
text = re.sub(r'(?i)(?<!\w)zamzam(?!\w)', 'samsam', text)
def replace_shortcuts(match):
word = match.group(0).lower()
return shortcut_map.get(word, word)
pattern = re.compile(r'\b(' + '|'.join(re.escape(k) for k in shortcut_map.keys()) + r')\b', re.IGNORECASE)
text = pattern.sub(replace_shortcuts, text)
def replace_countries(match):
word = match.group(0).lower()
return country_map.get(word, word)
country_pattern = re.compile(r'\b(' + '|'.join(re.escape(k) for k in country_map.keys()) + r')\b', re.IGNORECASE)
text = country_pattern.sub(replace_countries, text)
text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text)
text = re.sub(r'\.\d+', '', text)
def replace_num(match):
return number_to_words(match.group())
text = re.sub(r'\d+', replace_num, text)
symbol_map = {
'$': 'doolar',
'=': 'egwal',
'+': 'balaas',
'#': 'haash'
}
for sym, word in symbol_map.items():
text = text.replace(sym, ' ' + word + ' ')
text = text.replace("KH", "qa").replace("Z", "S")
text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
if re.search(r'(?i)(zamzam|samsam)[\s\.,!?]*$', text.strip()):
text += " m"
return text
def waveform_to_wav_bytes(waveform: torch.Tensor, sample_rate: int = 22050) -> bytes:
np_waveform = waveform.cpu().numpy()
if np_waveform.ndim == 3:
np_waveform = np_waveform[0]
if np_waveform.ndim == 2:
np_waveform = np_waveform.mean(axis=0)
np_waveform = np.clip(np_waveform, -1.0, 1.0).astype(np.float32)
pcm_waveform = (np_waveform * 32767).astype(np.int16)
buf = io.BytesIO()
scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform)
buf.seek(0)
return buf.read()
class TextIn(BaseModel):
inputs: str
@app.post("/synthesize")
async def synthesize_post(data: TextIn):
paragraphs = [p.strip() for p in data.inputs.split('\n') if p.strip()]
sample_rate = getattr(model.config, "sampling_rate", 22050)
all_waveforms = []
for paragraph in paragraphs:
normalized = normalize_text(paragraph)
inputs = tokenizer(normalized, return_tensors="pt").to(device)
with torch.no_grad():
output = model(**inputs)
waveform = (
output.waveform if hasattr(output, "waveform") else
output["waveform"] if isinstance(output, dict) and "waveform" in output else
output[0] if isinstance(output, (tuple, list)) else
None
)
if waveform is None:
continue
all_waveforms.append(waveform)
silence = torch.zeros(1, sample_rate).to(waveform.device)
all_waveforms.append(silence)
if not all_waveforms:
return {"error": "No audio generated."}
final_waveform = torch.cat(all_waveforms, dim=-1)
wav_bytes = waveform_to_wav_bytes(final_waveform, sample_rate=sample_rate)
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav")
@app.get("/synthesize")
async def synthesize_get(text: str = Query(..., description="Text to synthesize"), test: bool = Query(False)):
if test:
paragraphs = text.count("\n") + 1
duration_s = paragraphs * 6
sample_rate = 22050
t = np.linspace(0, duration_s, int(sample_rate * duration_s), endpoint=False)
freq = 440
waveform = 0.5 * np.sin(2 * math.pi * freq * t).astype(np.float32)
pcm_waveform = (waveform * 32767).astype(np.int16)
buf = io.BytesIO()
scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform)
buf.seek(0)
return StreamingResponse(buf, media_type="audio/wav")
normalized = normalize_text(text)
inputs = tokenizer(normalized, return_tensors="pt").to(device)
with torch.no_grad():
output = model(**inputs)
waveform = (
output.waveform if hasattr(output, "waveform") else
output["waveform"] if isinstance(output, dict) and "waveform" in output else
output[0] if isinstance(output, (tuple, list)) else
None
)
if waveform is None:
return {"error": "Waveform not found in model output"}
sample_rate = getattr(model.config, "sampling_rate", 22050)
wav_bytes = waveform_to_wav_bytes(waveform, sample_rate=sample_rate)
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav")
|