File size: 3,463 Bytes
bb65721
cc98495
bb65721
 
 
 
f8f6598
bb65721
 
 
cc98495
 
 
f8f6598
bb65721
 
 
 
 
 
 
 
 
 
f8f6598
bb65721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f6598
bb65721
 
 
 
 
 
 
 
cc98495
bb65721
 
 
 
 
 
 
 
f8f6598
bb65721
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr
import torch
import numpy as np
import scipy.io.wavfile
from transformers import VitsModel, AutoTokenizer
import re

# Load fine-tuned model from Hugging Face Hub or local path
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()

number_words = {
    0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
    6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
    11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
    14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
    17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
    20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
    60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
    100: "boqol", 1000: "kun"
}

def number_to_words(number):
    number = int(number)
    if number < 20:
        return number_words[number]
    elif number < 100:
        tens, unit = divmod(number, 10)
        return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
    elif number < 1000:
        hundreds, remainder = divmod(number, 100)
        part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
        if remainder:
            part += " iyo " + number_to_words(remainder)
        return part
    elif number < 1000000:
        thousands, remainder = divmod(number, 1000)
        words = []
        if thousands == 1:
            words.append("kun")
        else:
            words.append(number_to_words(thousands) + " kun")
        if remainder >= 100:
            hundreds, rem2 = divmod(remainder, 100)
            if hundreds:
                boqol_text = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
                words.append(boqol_text)
            if rem2:
                words.append("iyo " + number_to_words(rem2))
        elif remainder:
            words.append("iyo " + number_to_words(remainder))
        return " ".join(words)
    elif number < 1000000000:
        millions, remainder = divmod(number, 1000000)
        words = []
        if millions == 1:
            words.append("milyan")
        else:
            words.append(number_to_words(millions) + " milyan")
        if remainder:
            words.append(number_to_words(remainder))
        return " ".join(words)
    else:
        return str(number)

def normalize_text(text):
    numbers = re.findall(r'\d+', text)
    for num in numbers:
        text = text.replace(num, number_to_words(num))
    text = text.replace("KH", "qa").replace("Z", "S")
    text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
    text = text.replace("ZamZam", "SamSam")
    return text

def tts(text):
    text = normalize_text(text)
    inputs = tokenizer(text, return_tensors="pt").to(device)
    with torch.no_grad():
        waveform = model(**inputs).waveform.squeeze().cpu().numpy()
    filename = "output.wav"
    scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16))
    return filename

gr.Interface(
    fn=tts,
    inputs=gr.Textbox(label="Geli qoraal Soomaali ah"),
    outputs=gr.Audio(label="Codka TTS"),
    title="Somali TTS",
    description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah.",
).launch()