File size: 10,176 Bytes
e7a44ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import time
import torch
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from utility import (
    load_emotion_dataset,
    encode_labels,
    build_vocab,
    collate_fn_rnn,
    collate_fn_transformer
)
from models.rnn import RNNClassifier
from models.lstm import LSTMClassifier
from models.transformer import TransformerClassifier
from tqdm import tqdm

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def summarize_class_distribution(dataset, label_encoder):
    labels = [example["label"] for example in dataset]
    counter = Counter(labels)
    print("\nπŸ” Class distribution:")
    for label_idx, count in sorted(counter.items()):
        label_name = label_encoder.inverse_transform([label_idx])[0]
        print(f"{label_name:>10}: {count}")

def plot_class_countplot(dataset, label_encoder):
    labels = [example["label"] for example in dataset]
    counts = Counter(labels)
    label_display = [label_encoder.inverse_transform([i])[0] for i in sorted(counts.keys())]
    values = [counts[i] for i in sorted(counts.keys())]

    plt.figure(figsize=(8, 5))
    sns.barplot(x=label_display, y=values)
    plt.title("Emotion Class Distribution (Training Set)")
    plt.xlabel("Emotion")
    plt.ylabel("Count")
    plt.tight_layout()
    os.makedirs("plots", exist_ok=True)
    plt.savefig("plots/class_distribution.png")
    plt.close()

def plot_loss_curve(train_losses, test_losses, model_name):
    plt.figure(figsize=(8, 4))
    plt.plot(train_losses, label="Train Loss")
    plt.plot(test_losses, label="Test Loss")
    plt.xlabel("Epoch")
    plt.ylabel("Loss")
    plt.title(f"{model_name} Train vs Test Loss")
    plt.legend()
    os.makedirs("plots", exist_ok=True)
    plt.savefig(f"plots/{model_name.lower()}_loss_curve.png")
    plt.close()

def compute_test_loss(model, dataloader, criterion, model_type):
    total_loss = 0
    with torch.no_grad():
        model.eval()
        for batch in dataloader:
            if isinstance(batch, tuple):
                input_ids, labels = batch
                attention_mask = None
            else:
                input_ids = batch["input_ids"]
                attention_mask = batch.get("attention_mask", None)
                labels = batch["labels"]

            input_ids = input_ids.to(device)
            labels = labels.to(device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(device)

            if model_type == "transformer":
                outputs = model(input_ids=input_ids, attention_mask=attention_mask)
            else:
                outputs = model(input_ids)

            loss = criterion(outputs, labels)
            total_loss += loss.item()
    return total_loss / len(dataloader)

def train_model(model, train_loader, test_loader, optimizer, criterion, epochs, model_type="rnn"):
    train_losses = []
    test_losses = []

    for epoch in range(epochs):
        model.train()
        start_time = time.time()
        total_loss = 0
        progress_bar = tqdm(train_loader, desc=f"Epoch {epoch + 1}", ncols=100)

        for batch in progress_bar:
            optimizer.zero_grad()

            if isinstance(batch, tuple):
                input_ids, labels = batch
                attention_mask = None
            else:
                input_ids = batch["input_ids"]
                attention_mask = batch.get("attention_mask", None)
                labels = batch["labels"]

            input_ids = input_ids.to(device)
            labels = labels.to(device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(device)

            if model_type == "transformer":
                outputs = model(input_ids=input_ids, attention_mask=attention_mask)
            else:
                outputs = model(input_ids)

            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            avg_loss = total_loss / len(train_loader)
            progress_bar.set_postfix({"Avg Loss": f"{avg_loss:.4f}"})

        test_loss = compute_test_loss(model, test_loader, criterion, model_type)
        train_losses.append(avg_loss)
        test_losses.append(test_loss)

        print(f"βœ… Epoch {epoch + 1} | Train: {avg_loss:.4f} | Test: {test_loss:.4f} | Time: {time.time() - start_time:.2f}s")

    torch.cuda.empty_cache()
    del model
    return train_losses, test_losses

def evaluate_preds(model, dataloader, model_type="rnn"):
    model.eval()
    all_preds = []
    all_labels = []
    with torch.no_grad():
        for batch in dataloader:
            if isinstance(batch, tuple):
                input_ids, labels = batch
                attention_mask = None
            else:
                input_ids = batch["input_ids"]
                attention_mask = batch.get("attention_mask", None)
                labels = batch["labels"]

            input_ids = input_ids.to(device)
            labels = labels.to(device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(device)

            if model_type == "transformer":
                outputs = model(input_ids=input_ids, attention_mask=attention_mask)
            else:
                outputs = model(input_ids)

            preds = torch.argmax(outputs, dim=1)
            all_preds.extend(preds.cpu().tolist())
            all_labels.extend(labels.cpu().tolist())
    return all_labels, all_preds

def plot_confusion_matrices(y_true_train, y_pred_train, y_true_test, y_pred_test, labels, title, filename):
    fig, axes = plt.subplots(1, 2, figsize=(14, 6))
    cm_train = confusion_matrix(y_true_train, y_pred_train)
    cm_test = confusion_matrix(y_true_test, y_pred_test)

    ConfusionMatrixDisplay(cm_train, display_labels=labels).plot(ax=axes[0], cmap='Blues', colorbar=False)
    axes[0].set_title(f"{title} - Train")

    ConfusionMatrixDisplay(cm_test, display_labels=labels).plot(ax=axes[1], cmap='Oranges', colorbar=False)
    axes[1].set_title(f"{title} - Test")

    plt.tight_layout()
    os.makedirs("plots", exist_ok=True)
    plt.savefig(f"plots/{filename}")
    plt.close()

# Load and encode data
data = load_emotion_dataset("train")
train_data, label_encoder = encode_labels(data)
test_data, _ = encode_labels(load_emotion_dataset("test"))
labels = label_encoder.classes_
output_dim = len(labels)
padding_idx = 0

summarize_class_distribution(train_data, label_encoder)
plot_class_countplot(train_data, label_encoder)

# Build vocab
vocab = build_vocab(train_data)

model_name = "prajjwal1/bert-tiny"
tokenizer = AutoTokenizer.from_pretrained(model_name)

# DataLoaders (no augmentation)
train_loader_rnn = DataLoader(train_data, batch_size=64, shuffle=True, collate_fn=lambda b: collate_fn_rnn(b, vocab, partial_prob=0.0))
test_loader_rnn = DataLoader(test_data, batch_size=64, shuffle=False, collate_fn=lambda b: collate_fn_rnn(b, vocab, partial_prob=0.0))

train_loader_tf = DataLoader(train_data, batch_size=64, shuffle=True, collate_fn=lambda b: collate_fn_transformer(b, tokenizer, partial_prob=0.0))
test_loader_tf = DataLoader(test_data, batch_size=64, shuffle=False, collate_fn=lambda b: collate_fn_transformer(b, tokenizer, partial_prob=0.0))

# Initialize and train models
rnn = RNNClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
lstm = LSTMClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
transformer = TransformerClassifier(model_name, output_dim).to(device)

criterion = torch.nn.CrossEntropyLoss()

# rnn_train_losses, rnn_test_losses = train_model(rnn, train_loader_rnn, test_loader_rnn, torch.optim.Adam(rnn.parameters(), lr=1e-4), criterion, epochs=50, model_type="rnn")
# torch.save(rnn.state_dict(), "pretrained_models/best_rnn.pt")
# plot_loss_curve(rnn_train_losses, rnn_test_losses, "RNN")
#
# lstm_train_losses, lstm_test_losses = train_model(lstm, train_loader_rnn, test_loader_rnn, torch.optim.Adam(lstm.parameters(), lr=1e-4), criterion, epochs=50, model_type="lstm")
# torch.save(lstm.state_dict(), "pretrained_models/best_lstm.pt")
# plot_loss_curve(lstm_train_losses, lstm_test_losses, "LSTM")

tf_train_losses, tf_test_losses = train_model(transformer, train_loader_tf, test_loader_tf, torch.optim.Adam(transformer.parameters(), lr=2e-5), criterion, epochs=50, model_type="transformer")
torch.save(transformer.state_dict(), "pretrained_models/best_transformer.pt")
plot_loss_curve(tf_train_losses, tf_test_losses, "Transformer")

# Evaluate and plot
model_paths = {
    "RNN": "pretrained_models/best_rnn.pt",
    "LSTM": "pretrained_models/best_lstm.pt",
    "Transformer": "pretrained_models/best_transformer.pt"
}

for name in ["RNN", "LSTM", "Transformer"]:
    if name == "RNN":
        model = RNNClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
        loader = train_loader_rnn
        test_loader = test_loader_rnn
    elif name == "LSTM":
        model = LSTMClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
        loader = train_loader_rnn
        test_loader = test_loader_rnn
    else:
        model = TransformerClassifier(model_name, output_dim).to(device)
        loader = train_loader_tf
        test_loader = test_loader_tf

    model.load_state_dict(torch.load(model_paths[name]))
    model.eval()

    y_train_true, y_train_pred = evaluate_preds(model, loader, model_type=name.lower())
    y_test_true, y_test_pred = evaluate_preds(model, test_loader, model_type=name.lower())

    plot_confusion_matrices(
        y_train_true, y_train_pred, y_test_true, y_test_pred,
        labels=labels,
        title=name,
        filename=f"{name.lower()}_confusion_matrices.png"
    )