File size: 7,369 Bytes
765bd33
 
 
 
 
 
a01b0e0
765bd33
 
 
 
 
58f2376
a01b0e0
58f2376
765bd33
58f2376
765bd33
58f2376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765bd33
 
58f2376
765bd33
 
0f13924
765bd33
 
58f2376
765bd33
58f2376
 
 
 
 
 
765bd33
58f2376
 
 
 
765bd33
58f2376
765bd33
 
 
 
 
 
 
 
 
58f2376
 
765bd33
 
58f2376
 
765bd33
 
 
 
 
 
58f2376
 
765bd33
 
58f2376
765bd33
 
 
 
 
 
58f2376
765bd33
 
 
 
 
 
58f2376
 
 
765bd33
 
58f2376
 
 
765bd33
58f2376
 
 
 
765bd33
 
58f2376
 
765bd33
 
58f2376
 
765bd33
58f2376
 
 
 
 
 
765bd33
58f2376
765bd33
58f2376
765bd33
 
58f2376
 
 
765bd33
 
58f2376
 
 
 
c56b9f1
58f2376
765bd33
 
58f2376
 
0e5a658
765bd33
58f2376
 
765bd33
58f2376
 
 
 
765bd33
58f2376
765bd33
58f2376
765bd33
 
 
 
58f2376
675c01e
765bd33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import cv2
import numpy as np
import json
import random
from PIL import Image, ImageDraw, ImageFont
import asyncio

import requests
import base64
import gradio as gr

# Set the machine number and model path
machine_number = 0
model = os.path.join(os.path.dirname(__file__), "models", "eva", "Eva_0.png")

# Define a mapping of model names to file paths
MODEL_MAP = {
    "AI Model Rouyan_0": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_0.png"),
    "AI Model Rouyan_1": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_1.png"),
    "AI Model Rouyan_2": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_2.png"),
    "AI Model Eva_0": os.path.join("models", "eva", "Eva_0.png"),
    "AI Model Eva_1": os.path.join("models", "eva", "Eva_1.png"),
    "AI Model Simon_0": os.path.join("models", "simon_online", "Simon_0.png"),
    "AI Model Simon_1": os.path.join("models", "simon_online", "Simon_1.png"),
    "AI Model Xuanxuan_0": os.path.join("models", "xiaoxuan_online", "Xuanxuan_0.png"),
    "AI Model Xuanxuan_1": os.path.join("models", "xiaoxuan_online", "Xuanxuan_1.png"),
    "AI Model Xuanxuan_2": os.path.join("models", "xiaoxuan_online", "Xuanxuan_2.png"),
    "AI Model Yaqi_0": os.path.join("models", "yaqi", "Yaqi_0.png"),
    "AI Model Yaqi_1": os.path.join("models", "yaqi", "Yaqi_1.png"),
    "AI Model Yaqi_2": os.path.join("models", "yaqi", "Yaqi_2.png"),
    "AI Model Yaqi_3": os.path.join("models", "yaqi", "Yaqi_3.png"),
    "AI Model Yifeng_0": os.path.join("models", "yifeng_online", "Yifeng_0.png"),
    "AI Model Yifeng_1": os.path.join("models", "yifeng_online", "Yifeng_1.png"),
    "AI Model Yifeng_2": os.path.join("models", "yifeng_online", "Yifeng_2.png"),
    "AI Model Yifeng_3": os.path.join("models", "yifeng_online", "Yifeng_3.png"),
}

# Function to add watermark text to image
def add_waterprint(img):
    h, w, _ = img.shape
    img = cv2.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)
    return img

# Function to process try-on results
def get_tryon_result(model_name, garment1, garment2, seed=1234):
    if isinstance(model_name, np.ndarray):
       model_name = model_name[0] 
    
    model_name = "AI Model " + model_name.split("\\")[-1].split(".")[0]  # Handle Windows path
    print(type(model_name))


    # Directly load the model image from the disk, no need for Gradio file upload
    model_image = cv2.imread(MODEL_MAP.get(model_name))  # Load model image from disk
    if model_image is None:
        raise ValueError(f"Model image {model_name} could not be loaded.")

    # Encode garments as base64
    encoded_garment1 = cv2.imencode('.jpg', garment1)[1].tobytes()
    encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')

    if garment2 is not None:
        encoded_garment2 = cv2.imencode('.jpg', garment2)[1].tobytes()
        encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
    else:
        encoded_garment2 = ''

    # Get the IP address from environment variable or default to localhost
    url = os.environ.get('OA_IP_ADDRESS', 'http://localhost:5000')
    headers = {'Content-Type': 'application/json'}
    seed = random.randint(0, 1222222222)

    # Prepare data for POST request
    data = {
        "garment1": encoded_garment1,
        "garment2": encoded_garment2,
        "model_name": model_name,
        "seed": seed
    }

    # Send POST request to server
    response = requests.post(url, headers=headers, data=json.dumps(data))
    print("response code", response.status_code)

    if response.status_code == 200:
        result = response.json()
        result = base64.b64decode(result['images'][0])
        result_np = np.frombuffer(result, np.uint8)
        result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
    else:
        print('Server error!')

    final_img = add_waterprint(result_img)

    return final_img


with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 400px !important}") as demo:
    
    # Header Section
    gr.HTML(
        """
        <div style="text-align: center; padding: 20px;">
            <h1 style="font-size: 2.5rem; color: #2c3e50;">Outfit Anyone</h1>
            <h2 style="color: #34495e;">Ultra-high quality virtual try-on for any clothing and any person</h2>
        </div>
        """
    )

    # UI Layout for Image Inputs and Text Description
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Upload Your Model Image")
            init_image = gr.Image(sources='upload', type="numpy", label="Select a Model Image", value=None)
            example = gr.Examples(inputs=init_image,
                                  examples_per_page=4,
                                  examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0'))])
        
        with gr.Column():
            gr.Markdown(
                """
                <h3 style="color: #2c3e50;">Instructions</h3>
                <p style="font-size: 1.1rem; color: #7f8c8d;">Please upload your model image and garment images (top and bottom). 
                The models are pre-loaded and cannot be modified. 
                For a dress or coat, you only need to upload the image for the 'Top Garment' section and leave the 'Bottom Garment' section empty.</p>
                """
            )
            with gr.Row():
                garment_top = gr.Image(sources='upload', type="numpy", label="Top Garment")
                example_top = gr.Examples(inputs=garment_top,
                                          examples_per_page=5,
                                          examples=[os.path.join(os.path.dirname(__file__), "garments", "top222.JPG")])
                
                garment_down = gr.Image(sources='upload', type="numpy", label="Bottom Garment")
                example_down = gr.Examples(inputs=garment_down,
                                           examples_per_page=5,
                                           examples=[os.path.join(os.path.dirname(__file__), "garments", "bottom1.png")])

            run_button = gr.Button(value="Run Try-On")
        
        with gr.Column():
            gallery = gr.Image(label="Try-On Result")

            run_button.click(fn=get_tryon_result, 
                             inputs=[init_image, garment_top, garment_down], 
                             outputs=[gallery], 
                             concurrency_limit=2)

    # Example Section
    gr.Markdown("## Example Try-On Results")
    with gr.Row():
        reference_image1 = gr.Image(label="Model Example", scale=1, value="examples\\examples_basemodel.png")
        reference_image2 = gr.Image(label="Garment Example", scale=1, value="examples\\examples_garment1.jpg")
        reference_image3 = gr.Image(label="Result Example", scale=1, value="examples\\examples_result1.png")

    gr.Examples(
        examples=[["examples\\examples_basemodel.png", "examples\\examples_garment1.png", "examples\\examples_result1.png"]],
        inputs=[reference_image1, reference_image2, reference_image3],
        label="Check out our example outfits!",
    )

if __name__ == "__main__":
    ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
    print("IP address", ip)
    demo.queue(max_size=10)
    demo.launch()