File size: 31,877 Bytes
12b7f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
import os
import cv2
import time
import tqdm
import numpy as np
import dearpygui.dearpygui as dpg

import torch
import torch.nn.functional as F

import rembg

from cam_utils import orbit_camera, OrbitCamera
from gs_renderer import Renderer, MiniCam

from grid_put import mipmap_linear_grid_put_2d
from mesh import Mesh, safe_normalize

class GUI:
    def __init__(self, opt):
        self.opt = opt  # shared with the trainer's opt to support in-place modification of rendering parameters.
        self.gui = opt.gui # enable gui
        self.W = opt.W
        self.H = opt.H
        self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)

        self.mode = "image"
        self.seed = "random"

        self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
        self.need_update = True  # update buffer_image

        # models
        self.device = torch.device("cuda")
        self.bg_remover = None

        self.guidance_sd = None
        self.guidance_zero123 = None

        self.enable_sd = False
        self.enable_zero123 = False

        # renderer
        self.renderer = Renderer(sh_degree=self.opt.sh_degree)
        self.gaussain_scale_factor = 1

        # input image
        self.input_img = None
        self.input_mask = None
        self.input_img_torch = None
        self.input_mask_torch = None
        self.overlay_input_img = False
        self.overlay_input_img_ratio = 0.5

        # input text
        self.prompt = ""
        self.negative_prompt = ""

        # training stuff
        self.training = False
        self.optimizer = None
        self.step = 0
        self.train_steps = 1  # steps per rendering loop
        
        # load input data from cmdline
        if self.opt.input is not None:
            self.load_input(self.opt.input)
        
        # override prompt from cmdline
        if self.opt.prompt is not None:
            self.prompt = self.opt.prompt

        # override if provide a checkpoint
        if self.opt.load is not None:
            self.renderer.initialize(self.opt.load)            
        else:
            # initialize gaussians to a blob
            self.renderer.initialize(num_pts=self.opt.num_pts)

        if self.gui:
            dpg.create_context()
            self.register_dpg()
            self.test_step()

    def __del__(self):
        if self.gui:
            dpg.destroy_context()

    def seed_everything(self):
        try:
            seed = int(self.seed)
        except:
            seed = np.random.randint(0, 1000000)

        os.environ["PYTHONHASHSEED"] = str(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = True

        self.last_seed = seed

    def prepare_train(self):

        self.step = 0

        # setup training
        self.renderer.gaussians.training_setup(self.opt)
        # do not do progressive sh-level
        self.renderer.gaussians.active_sh_degree = self.renderer.gaussians.max_sh_degree
        self.optimizer = self.renderer.gaussians.optimizer

        # default camera
        pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
        self.fixed_cam = MiniCam(
            pose,
            self.opt.ref_size,
            self.opt.ref_size,
            self.cam.fovy,
            self.cam.fovx,
            self.cam.near,
            self.cam.far,
        )

        self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
        self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None

        # lazy load guidance model
        if self.guidance_sd is None and self.enable_sd:
            print(f"[INFO] loading SD...")
            from guidance.sd_utils import StableDiffusion
            self.guidance_sd = StableDiffusion(self.device)
            print(f"[INFO] loaded SD!")

        if self.guidance_zero123 is None and self.enable_zero123:
            print(f"[INFO] loading zero123...")
            from guidance.zero123_utils import Zero123
            self.guidance_zero123 = Zero123(self.device)
            print(f"[INFO] loaded zero123!")

        # input image
        if self.input_img is not None:
            self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
            self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)

            self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
            self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)

        # prepare embeddings
        with torch.no_grad():

            if self.enable_sd:
                self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])

            if self.enable_zero123:
                self.guidance_zero123.get_img_embeds(self.input_img_torch)

    def train_step(self):
        starter = torch.cuda.Event(enable_timing=True)
        ender = torch.cuda.Event(enable_timing=True)
        starter.record()

        for _ in range(self.train_steps):

            self.step += 1
            step_ratio = min(1, self.step / self.opt.iters)

            # update lr
            self.renderer.gaussians.update_learning_rate(self.step)

            loss = 0

            ### known view
            if self.input_img_torch is not None:
                cur_cam = self.fixed_cam
                out = self.renderer.render(cur_cam)

                # rgb loss
                image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
                loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch)

                # mask loss
                mask = out["alpha"].unsqueeze(0) # [1, 1, H, W] in [0, 1]
                loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch)

            ### novel view (manual batch)
            render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
            images = []
            vers, hors, radii = [], [], []
            # avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
            min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
            max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
            for _ in range(self.opt.batch_size):

                # render random view
                ver = np.random.randint(min_ver, max_ver)
                hor = np.random.randint(-180, 180)
                radius = 0

                vers.append(ver)
                hors.append(hor)
                radii.append(radius)

                pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)

                cur_cam = MiniCam(
                    pose,
                    render_resolution,
                    render_resolution,
                    self.cam.fovy,
                    self.cam.fovx,
                    self.cam.near,
                    self.cam.far,
                )

                invert_bg_color = np.random.rand() > self.opt.invert_bg_prob
                out = self.renderer.render(cur_cam, invert_bg_color=invert_bg_color)

                image = out["image"].unsqueeze(0)# [1, 3, H, W] in [0, 1]
                images.append(image)
            
            images = torch.cat(images, dim=0)

            # import kiui
            # kiui.lo(hor, ver)
            # kiui.vis.plot_image(image)

            # guidance loss
            if self.enable_sd:
                loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, step_ratio)

            if self.enable_zero123:
                loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.train_step(images, vers, hors, radii, step_ratio)
            
            # optimize step
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

            # densify and prune
            if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
                viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
                self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)

                if self.step % self.opt.densification_interval == 0:
                    # size_threshold = 20 if self.step > self.opt.opacity_reset_interval else None
                    self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=0.5, max_screen_size=1)
                
                if self.step % self.opt.opacity_reset_interval == 0:
                    self.renderer.gaussians.reset_opacity()

        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender)

        self.need_update = True

        if self.gui:
            dpg.set_value("_log_train_time", f"{t:.4f}ms")
            dpg.set_value(
                "_log_train_log",
                f"step = {self.step: 5d} (+{self.train_steps: 2d}) loss = {loss.item():.4f}",
            )

        # dynamic train steps (no need for now)
        # max allowed train time per-frame is 500 ms
        # full_t = t / self.train_steps * 16
        # train_steps = min(16, max(4, int(16 * 500 / full_t)))
        # if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
        #     self.train_steps = train_steps

    @torch.no_grad()
    def test_step(self):
        # ignore if no need to update
        if not self.need_update:
            return

        starter = torch.cuda.Event(enable_timing=True)
        ender = torch.cuda.Event(enable_timing=True)
        starter.record()

        # should update image
        if self.need_update:
            # render image

            cur_cam = MiniCam(
                self.cam.pose,
                self.W,
                self.H,
                self.cam.fovy,
                self.cam.fovx,
                self.cam.near,
                self.cam.far,
            )

            out = self.renderer.render(cur_cam, self.gaussain_scale_factor)

            buffer_image = out[self.mode]  # [3, H, W]

            if self.mode in ['depth', 'alpha']:
                buffer_image = buffer_image.repeat(3, 1, 1)
                if self.mode == 'depth':
                    buffer_image = (buffer_image - buffer_image.min()) / (buffer_image.max() - buffer_image.min() + 1e-20)

            buffer_image = F.interpolate(
                buffer_image.unsqueeze(0),
                size=(self.H, self.W),
                mode="bilinear",
                align_corners=False,
            ).squeeze(0)

            self.buffer_image = (
                buffer_image.permute(1, 2, 0)
                .contiguous()
                .clamp(0, 1)
                .contiguous()
                .detach()
                .cpu()
                .numpy()
            )

            # display input_image
            if self.overlay_input_img and self.input_img is not None:
                self.buffer_image = (
                    self.buffer_image * (1 - self.overlay_input_img_ratio)
                    + self.input_img * self.overlay_input_img_ratio
                )

            self.need_update = False

        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender)

        if self.gui:
            dpg.set_value("_log_infer_time", f"{t:.4f}ms ({int(1000/t)} FPS)")
            dpg.set_value(
                "_texture", self.buffer_image
            )  # buffer must be contiguous, else seg fault!

    
    def load_input(self, file):
        # load image
        print(f'[INFO] load image from {file}...')
        img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
        if img.shape[-1] == 3:
            if self.bg_remover is None:
                self.bg_remover = rembg.new_session()
            img = rembg.remove(img, session=self.bg_remover)

        img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
        img = img.astype(np.float32) / 255.0

        self.input_mask = img[..., 3:]
        # white bg
        self.input_img = img[..., :3] * self.input_mask + (1 - self.input_mask)
        # bgr to rgb
        self.input_img = self.input_img[..., ::-1].copy()

        # load prompt
        file_prompt = file.replace("_rgba.png", "_caption.txt")
        if os.path.exists(file_prompt):
            print(f'[INFO] load prompt from {file_prompt}...')
            with open(file_prompt, "r") as f:
                self.prompt = f.read().strip()

    @torch.no_grad()
    def save_model(self, mode='geo', texture_size=1024):
        os.makedirs(self.opt.outdir, exist_ok=True)
        if mode == 'geo':
            path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.ply')
            mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)
            mesh.write_ply(path)

        elif mode == 'geo+tex':
            path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.' + self.opt.mesh_format)
            mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)

            # perform texture extraction
            print(f"[INFO] unwrap uv...")
            h = w = texture_size
            mesh.auto_uv()
            mesh.auto_normal()

            albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32)
            cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32)

            # self.prepare_train() # tmp fix for not loading 0123
            # vers = [0]
            # hors = [0]
            vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9]
            hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0]

            render_resolution = 512

            import nvdiffrast.torch as dr

            if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
                glctx = dr.RasterizeGLContext()
            else:
                glctx = dr.RasterizeCudaContext()

            for ver, hor in zip(vers, hors):
                # render image
                pose = orbit_camera(ver, hor, self.cam.radius)

                cur_cam = MiniCam(
                    pose,
                    render_resolution,
                    render_resolution,
                    self.cam.fovy,
                    self.cam.fovx,
                    self.cam.near,
                    self.cam.far,
                )
                
                cur_out = self.renderer.render(cur_cam)

                rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]

                # enhance texture quality with zero123 [not working well]
                # if self.opt.guidance_model == 'zero123':
                #     rgbs = self.guidance.refine(rgbs, [ver], [hor], [0])
                    # import kiui
                    # kiui.vis.plot_image(rgbs)
                    
                # get coordinate in texture image
                pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
                proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device)

                v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
                v_clip = v_cam @ proj.T
                rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution))

                depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1]
                depth = depth.squeeze(0) # [H, W, 1]

                alpha = (rast[0, ..., 3:] > 0).float()

                uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft)  # [1, 512, 512, 2] in [0, 1]

                # use normal to produce a back-project mask
                normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn)
                normal = safe_normalize(normal[0])

                # rotated normal (where [0, 0, 1] always faces camera)
                rot_normal = normal @ pose[:3, :3]
                viewcos = rot_normal[..., [2]]

                mask = (alpha > 0) & (viewcos > 0.5)  # [H, W, 1]
                mask = mask.view(-1)

                uvs = uvs.view(-1, 2).clamp(0, 1)[mask]
                rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous()
                
                # update texture image
                cur_albedo, cur_cnt = mipmap_linear_grid_put_2d(
                    h, w,
                    uvs[..., [1, 0]] * 2 - 1,
                    rgbs,
                    min_resolution=256,
                    return_count=True,
                )
                
                # albedo += cur_albedo
                # cnt += cur_cnt
                mask = cnt.squeeze(-1) < 0.1
                albedo[mask] += cur_albedo[mask]
                cnt[mask] += cur_cnt[mask]

            mask = cnt.squeeze(-1) > 0
            albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3)

            mask = mask.view(h, w)

            albedo = albedo.detach().cpu().numpy()
            mask = mask.detach().cpu().numpy()

            # dilate texture
            from sklearn.neighbors import NearestNeighbors
            from scipy.ndimage import binary_dilation, binary_erosion

            inpaint_region = binary_dilation(mask, iterations=32)
            inpaint_region[mask] = 0

            search_region = mask.copy()
            not_search_region = binary_erosion(search_region, iterations=3)
            search_region[not_search_region] = 0

            search_coords = np.stack(np.nonzero(search_region), axis=-1)
            inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)

            knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(
                search_coords
            )
            _, indices = knn.kneighbors(inpaint_coords)

            albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)]

            mesh.albedo = torch.from_numpy(albedo).to(self.device)
            mesh.write(path)

        else:
            path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
            self.renderer.gaussians.save_ply(path)

        print(f"[INFO] save model to {path}.")

    def register_dpg(self):
        ### register texture

        with dpg.texture_registry(show=False):
            dpg.add_raw_texture(
                self.W,
                self.H,
                self.buffer_image,
                format=dpg.mvFormat_Float_rgb,
                tag="_texture",
            )

        ### register window

        # the rendered image, as the primary window
        with dpg.window(
            tag="_primary_window",
            width=self.W,
            height=self.H,
            pos=[0, 0],
            no_move=True,
            no_title_bar=True,
            no_scrollbar=True,
        ):
            # add the texture
            dpg.add_image("_texture")

        # dpg.set_primary_window("_primary_window", True)

        # control window
        with dpg.window(
            label="Control",
            tag="_control_window",
            width=600,
            height=self.H,
            pos=[self.W, 0],
            no_move=True,
            no_title_bar=True,
        ):
            # button theme
            with dpg.theme() as theme_button:
                with dpg.theme_component(dpg.mvButton):
                    dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
                    dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
                    dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
                    dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
                    dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)

            # timer stuff
            with dpg.group(horizontal=True):
                dpg.add_text("Infer time: ")
                dpg.add_text("no data", tag="_log_infer_time")

            def callback_setattr(sender, app_data, user_data):
                setattr(self, user_data, app_data)

            # init stuff
            with dpg.collapsing_header(label="Initialize", default_open=True):

                # seed stuff
                def callback_set_seed(sender, app_data):
                    self.seed = app_data
                    self.seed_everything()

                dpg.add_input_text(
                    label="seed",
                    default_value=self.seed,
                    on_enter=True,
                    callback=callback_set_seed,
                )

                # input stuff
                def callback_select_input(sender, app_data):
                    # only one item
                    for k, v in app_data["selections"].items():
                        dpg.set_value("_log_input", k)
                        self.load_input(v)

                    self.need_update = True

                with dpg.file_dialog(
                    directory_selector=False,
                    show=False,
                    callback=callback_select_input,
                    file_count=1,
                    tag="file_dialog_tag",
                    width=700,
                    height=400,
                ):
                    dpg.add_file_extension("Images{.jpg,.jpeg,.png}")

                with dpg.group(horizontal=True):
                    dpg.add_button(
                        label="input",
                        callback=lambda: dpg.show_item("file_dialog_tag"),
                    )
                    dpg.add_text("", tag="_log_input")
                
                # overlay stuff
                with dpg.group(horizontal=True):

                    def callback_toggle_overlay_input_img(sender, app_data):
                        self.overlay_input_img = not self.overlay_input_img
                        self.need_update = True

                    dpg.add_checkbox(
                        label="overlay image",
                        default_value=self.overlay_input_img,
                        callback=callback_toggle_overlay_input_img,
                    )

                    def callback_set_overlay_input_img_ratio(sender, app_data):
                        self.overlay_input_img_ratio = app_data
                        self.need_update = True

                    dpg.add_slider_float(
                        label="ratio",
                        min_value=0,
                        max_value=1,
                        format="%.1f",
                        default_value=self.overlay_input_img_ratio,
                        callback=callback_set_overlay_input_img_ratio,
                    )

                # prompt stuff
            
                dpg.add_input_text(
                    label="prompt",
                    default_value=self.prompt,
                    callback=callback_setattr,
                    user_data="prompt",
                )

                dpg.add_input_text(
                    label="negative",
                    default_value=self.negative_prompt,
                    callback=callback_setattr,
                    user_data="negative_prompt",
                )

                # save current model
                with dpg.group(horizontal=True):
                    dpg.add_text("Save: ")

                    def callback_save(sender, app_data, user_data):
                        self.save_model(mode=user_data)

                    dpg.add_button(
                        label="model",
                        tag="_button_save_model",
                        callback=callback_save,
                        user_data='model',
                    )
                    dpg.bind_item_theme("_button_save_model", theme_button)

                    dpg.add_button(
                        label="geo",
                        tag="_button_save_mesh",
                        callback=callback_save,
                        user_data='geo',
                    )
                    dpg.bind_item_theme("_button_save_mesh", theme_button)

                    dpg.add_button(
                        label="geo+tex",
                        tag="_button_save_mesh_with_tex",
                        callback=callback_save,
                        user_data='geo+tex',
                    )
                    dpg.bind_item_theme("_button_save_mesh_with_tex", theme_button)

                    dpg.add_input_text(
                        label="",
                        default_value=self.opt.save_path,
                        callback=callback_setattr,
                        user_data="save_path",
                    )

            # training stuff
            with dpg.collapsing_header(label="Train", default_open=True):
                # lr and train button
                with dpg.group(horizontal=True):
                    dpg.add_text("Train: ")

                    def callback_train(sender, app_data):
                        if self.training:
                            self.training = False
                            dpg.configure_item("_button_train", label="start")
                        else:
                            self.prepare_train()
                            self.training = True
                            dpg.configure_item("_button_train", label="stop")

                    # dpg.add_button(
                    #     label="init", tag="_button_init", callback=self.prepare_train
                    # )
                    # dpg.bind_item_theme("_button_init", theme_button)

                    dpg.add_button(
                        label="start", tag="_button_train", callback=callback_train
                    )
                    dpg.bind_item_theme("_button_train", theme_button)

                with dpg.group(horizontal=True):
                    dpg.add_text("", tag="_log_train_time")
                    dpg.add_text("", tag="_log_train_log")

            # rendering options
            with dpg.collapsing_header(label="Rendering", default_open=True):
                # mode combo
                def callback_change_mode(sender, app_data):
                    self.mode = app_data
                    self.need_update = True

                dpg.add_combo(
                    ("image", "depth", "alpha"),
                    label="mode",
                    default_value=self.mode,
                    callback=callback_change_mode,
                )

                # fov slider
                def callback_set_fovy(sender, app_data):
                    self.cam.fovy = np.deg2rad(app_data)
                    self.need_update = True

                dpg.add_slider_int(
                    label="FoV (vertical)",
                    min_value=1,
                    max_value=120,
                    format="%d deg",
                    default_value=np.rad2deg(self.cam.fovy),
                    callback=callback_set_fovy,
                )

                def callback_set_gaussain_scale(sender, app_data):
                    self.gaussain_scale_factor = app_data
                    self.need_update = True

                dpg.add_slider_float(
                    label="gaussain scale",
                    min_value=0,
                    max_value=1,
                    format="%.2f",
                    default_value=self.gaussain_scale_factor,
                    callback=callback_set_gaussain_scale,
                )

        ### register camera handler

        def callback_camera_drag_rotate_or_draw_mask(sender, app_data):
            if not dpg.is_item_focused("_primary_window"):
                return

            dx = app_data[1]
            dy = app_data[2]

            self.cam.orbit(dx, dy)
            self.need_update = True

        def callback_camera_wheel_scale(sender, app_data):
            if not dpg.is_item_focused("_primary_window"):
                return

            delta = app_data

            self.cam.scale(delta)
            self.need_update = True

        def callback_camera_drag_pan(sender, app_data):
            if not dpg.is_item_focused("_primary_window"):
                return

            dx = app_data[1]
            dy = app_data[2]

            self.cam.pan(dx, dy)
            self.need_update = True

        def callback_set_mouse_loc(sender, app_data):
            if not dpg.is_item_focused("_primary_window"):
                return

            # just the pixel coordinate in image
            self.mouse_loc = np.array(app_data)

        with dpg.handler_registry():
            # for camera moving
            dpg.add_mouse_drag_handler(
                button=dpg.mvMouseButton_Left,
                callback=callback_camera_drag_rotate_or_draw_mask,
            )
            dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
            dpg.add_mouse_drag_handler(
                button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
            )

        dpg.create_viewport(
            title="Gaussian3D",
            width=self.W + 600,
            height=self.H + (45 if os.name == "nt" else 0),
            resizable=False,
        )

        ### global theme
        with dpg.theme() as theme_no_padding:
            with dpg.theme_component(dpg.mvAll):
                # set all padding to 0 to avoid scroll bar
                dpg.add_theme_style(
                    dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
                )
                dpg.add_theme_style(
                    dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
                )
                dpg.add_theme_style(
                    dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
                )

        dpg.bind_item_theme("_primary_window", theme_no_padding)

        dpg.setup_dearpygui()

        ### register a larger font
        # get it from: https://github.com/lxgw/LxgwWenKai/releases/download/v1.300/LXGWWenKai-Regular.ttf
        if os.path.exists("LXGWWenKai-Regular.ttf"):
            with dpg.font_registry():
                with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font:
                    dpg.bind_font(default_font)

        # dpg.show_metrics()

        dpg.show_viewport()

    def render(self):
        assert self.gui
        while dpg.is_dearpygui_running():
            # update texture every frame
            if self.training:
                self.train_step()
            self.test_step()
            dpg.render_dearpygui_frame()
    
    # no gui mode
    def train(self, iters=500):
        if iters > 0:
            self.prepare_train()
            for i in tqdm.trange(iters):
                self.train_step()
            # do a last prune
            self.renderer.gaussians.prune(min_opacity=0.01, extent=1, max_screen_size=1)
        # save
        self.save_model(mode='model')
        self.save_model(mode='geo+tex')
        

if __name__ == "__main__":
    import argparse
    from omegaconf import OmegaConf

    parser = argparse.ArgumentParser()
    parser.add_argument("--config", required=True, help="path to the yaml config file")
    args, extras = parser.parse_known_args()

    # override default config from cli
    opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))

    gui = GUI(opt)

    if opt.gui:
        gui.render()
    else:
        gui.train(opt.iters)