File size: 13,783 Bytes
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT-2 configuration"""
import os
from typing import Tuple, Union

from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
    "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
    "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
    "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
    "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
}


class VGPT2Config(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
    instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the GPT-2
    [gpt2](https://huggingface.co/gpt2) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    TODO: this doc is completely out of sync with the actual args

    Args:
        vocab_size (`int`, *optional*, defaults to 50257):
            Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
        additional_vocab_size (`int`, *optional`, defaults to 0):
            Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
            are always trainable whereas regular vocab tokens can be frozen or not.
        n_positions (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        alpha_initializer (`str`, *optional*, defaults to `"ones"`):
            Initialization type for the alphas.
        alphas_initializer_range (`float`, *optional*, defaults to 0.0):
            The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention.
        alpha_type (`str`, *optional*, defaults to `"vector"`):
            Whether the gating alphas should be vectors or single floats.
        summary_type (`string`, *optional*, defaults to `"cls_index"`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in for the multiple choice head in
            [`GPT2DoubleHeadsModel`].

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            The dropout ratio to be used after the projection and activation.
        scale_attn_weights (`bool`, *optional*, defaults to `True`):
            Scale attention weights by dividing by sqrt(hidden_size)..
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
            Whether to additionally scale attention weights by `1 / layer_idx + 1`.
        reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
            Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
            dot-product/softmax to float() when training with mixed precision.
        cross_layer_interval (`int`, *optional*, default to 1)
            Interval for cross attention (from text to image) layers.

    Example:

    ```python
    >>> from transformers import GPT2Model, GPT2Config

    >>> # Initializing a GPT2 configuration
    >>> configuration = GPT2Config()

    >>> # Initializing a model from the configuration
    >>> model = GPT2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "vgpt2"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "hidden_size": "n_embd",
        "max_position_embeddings": "n_positions",
        "num_attention_heads": "n_head",
        "num_hidden_layers": "n_layer",
    }

    def __init__(
        self,
        vocab_size=50257,
        additional_vocab_size=0,
        n_positions=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
        n_inner=None,
        activation_function="gelu_new",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        alpha_initializer="ones",
        alphas_initializer_range=0.0,
        alpha_type="vector",
        summary_type="cls_index",
        summary_use_proj=True,
        summary_activation=None,
        summary_proj_to_labels=True,
        summary_first_dropout=0.1,
        scale_attn_weights=True,
        use_cache=True,
        bos_token_id=50256,
        eos_token_id=50256,
        scale_attn_by_inverse_layer_idx=False,
        reorder_and_upcast_attn=False,
        cross_layer_interval=1,
        tie_word_embeddings=False,
        freeze_text_layers=True,
        freeze_lm_head=False,
        freeze_vision_layers=True,
        vision_model_name="google/vit-base-patch16-224",
        vision_model_params="{}",
        vision_embed_dim=768,
        vision_image_size=224,
        image_token_index=50257,
        use_resampler=False,
        resampler_n_latents=64,
        resampler_depth=6,
        resampler_n_heads=16,
        resampler_head_dim=96,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.additional_vocab_size = additional_vocab_size
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_inner = n_inner
        self.activation_function = activation_function
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.alpha_initializer = alpha_initializer
        self.alphas_initializer_range = alphas_initializer_range
        self.alpha_type = alpha_type
        self.summary_type = summary_type
        self.summary_use_proj = summary_use_proj
        self.summary_activation = summary_activation
        self.summary_first_dropout = summary_first_dropout
        self.summary_proj_to_labels = summary_proj_to_labels
        self.scale_attn_weights = scale_attn_weights
        self.use_cache = use_cache
        self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
        self.reorder_and_upcast_attn = reorder_and_upcast_attn

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.cross_layer_interval = cross_layer_interval
        self.freeze_vision_layers = freeze_vision_layers
        self.vision_model_name = vision_model_name
        self.vision_model_params = vision_model_params

        self.tie_word_embeddings = tie_word_embeddings
        self.freeze_text_layers = freeze_text_layers
        self.freeze_lm_head = freeze_lm_head
        self.image_token_index = image_token_index

        self.vision_embed_dim = vision_embed_dim
        self.vision_image_size = vision_image_size

        # Resampler params
        self.use_resampler = use_resampler
        self.resampler_n_latents = resampler_n_latents
        self.resampler_depth = resampler_depth
        self.resampler_n_heads = resampler_n_heads
        self.resampler_head_dim = resampler_head_dim

        # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
        # PretrainedConfig.from_dict first instantiates the class with the config dict and only then
        # updates the config object with `kwargs` from from_pretrained, so during the instantiation
        # of this object many attributes have default values and haven't yet been overridden.
        # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.

        super().__init__(
            bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
        )

    def check_compatibilities(self):
        if self.tie_word_embeddings and (self.freeze_text_layers != self.freeze_lm_head):
            raise ValueError(
                "if `tie_word_embeddings` is True, then `freeze_lm_head` and `freeze_text_layers` must be equal."
            )

        vision_model_params = eval(self.vision_model_params)
        config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params)
        if hasattr(config, "vision_config"):
            vision_config = config.vision_config
        else:
            vision_config = config
        vision_embed_dim = vision_config.hidden_size
        if self.vision_embed_dim != vision_embed_dim:
            raise ValueError(
                f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model"
                f" ({vision_embed_dim})"
            )
        vision_image_size = vision_config.image_size
        if self.vision_image_size != vision_image_size:
            raise ValueError(
                f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model"
                f" ({vision_image_size})"
            )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        outputs = super(VGPT2Config, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
        if isinstance(outputs, Tuple):
            # When called with return_unused_kwargs=True, the first item will be the config
            outputs[0].check_compatibilities()
        else:
            outputs.check_compatibilities()
        return outputs