Spaces:
Runtime error
Runtime error
File size: 8,075 Bytes
f20057b 12089a1 f20057b 12089a1 f20057b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
import gradio as gr
import random
import numpy as np
from PIL import Image
import imagehash
import cv2
import os
import spaces
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from transformers.image_transforms import resize, to_channel_dimension_format
from typing import List
from PIL import Image
from collections import Counter
from datasets import load_dataset, concatenate_datasets
DEVICE = torch.device("cuda")
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2_raven_finetuned",
token=os.environ["HF_AUTH_TOKEN"],
)
MODEL = AutoModelForCausalLM.from_pretrained(
"HuggingFaceM4/idefics2_raven_finetuned",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
token=os.environ["HF_AUTH_TOKEN"],
).to(DEVICE)
if MODEL.config.use_resampler:
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
image_seq_len = (
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
DATASET = load_dataset("HuggingFaceM4/RAVEN_rendered", split="validation")
## Utils
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
# so this is a hack in order to redefine ONLY the transform method
def custom_transform(x):
x = convert_to_rgb(x)
x = to_numpy_array(x)
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
x = PROCESSOR.image_processor.normalize(
x,
mean=PROCESSOR.image_processor.image_mean,
std=PROCESSOR.image_processor.image_std
)
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
x = torch.tensor(x)
return x
def pixel_difference(image1, image2):
def color(im):
arr = np.array(im).flatten()
arr_list = arr.tolist()
counts = Counter(arr_list)
most_common = counts.most_common(2)
if most_common[0][0] == 255:
return most_common[1][0]
else:
return most_common[0][0]
def canny_edges(im):
im = cv2.Canny(np.array(im), 50, 100)
im[im!=0] = 255
return Image.fromarray(im)
def phash(im):
return imagehash.phash(canny_edges(im), hash_size=32)
def surface(im):
return (np.array(im) != 255).sum()
color_diff = np.abs(color(image1) - color(image2))
hash_diff = phash(image1) - phash(image2)
surface_diff = np.abs(surface(image1) - surface(image2))
if int(hash_diff/7) < 10:
return color_diff < 10 or int(surface_diff / (160 * 160) * 100) < 10
elif color_diff < 10:
return int(surface_diff / (160 * 160) * 100) < 10 or int(hash_diff/7) < 10
elif int(surface_diff / (160 * 160) * 100) < 10:
return int(hash_diff/7) < 10 or color_diff < 10
else:
return False
# End of Utils
def load_sample():
n = len(DATASET)
found_sample = False
while not found_sample:
idx = random.randint(0, n)
sample = DATASET[idx]
found_sample = True
return sample["image"], sample["label"], "", "", ""
@spaces.GPU(duration=180)
def model_inference(
image,
):
if image is None:
raise ValueError("`image` is None. It should be a PIL image.")
# return "A"
inputs = PROCESSOR.tokenizer(
f"{BOS_TOKEN}User:<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>Which figure should complete the logical sequence?<end_of_utterance>\nAssistant:",
return_tensors="pt",
add_special_tokens=False,
)
inputs["pixel_values"] = PROCESSOR.image_processor(
[image],
transform=custom_transform
)
inputs = {
k: v.to(DEVICE)
for k, v in inputs.items()
}
generation_kwargs = dict(
inputs,
bad_words_ids=BAD_WORDS_IDS,
max_length=4,
)
# Regular generation version
generated_ids = MODEL.generate(**generation_kwargs)
generated_text = PROCESSOR.batch_decode(
generated_ids,
skip_special_tokens=True
)[0]
return generated_text[-1]
model_prediction = gr.TextArea(
label="AI's guess",
visible=True,
lines=1,
max_lines=1,
interactive=False,
)
user_prediction = gr.TextArea(
label="Your guess",
visible=True,
lines=1,
max_lines=1,
interactive=False,
)
result = gr.TextArea(
label="Win or lose?",
visible=True,
lines=1,
max_lines=1,
interactive=False,
)
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="Beat the AI", theme=gr.themes.Base(), css=css) as demo:
gr.Markdown(
"Are you smarter than the AI?"
)
load_new_sample = gr.Button(value="Load new sample")
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
image_mode="L",
type="pil",
visible=True,
sources=None,
)
with gr.Column(scale=4):
with gr.Row():
a = gr.Button(value="A", min_width=1)
b = gr.Button(value="B", min_width=1)
c = gr.Button(value="C", min_width=1)
d = gr.Button(value="D", min_width=1)
with gr.Row():
e = gr.Button(value="E", min_width=1)
f = gr.Button(value="F", min_width=1)
g = gr.Button(value="G", min_width=1)
h = gr.Button(value="H", min_width=1)
with gr.Row():
model_prediction.render()
user_prediction.render()
solution = gr.TextArea(
label="Solution",
visible=False,
lines=1,
max_lines=1,
interactive=False,
)
with gr.Row():
result.render()
load_new_sample.click(
fn=load_sample,
inputs=[],
outputs=[imagebox, solution, model_prediction, user_prediction, result]
)
gr.on(
triggers=[
a.click,
b.click,
c.click,
d.click,
e.click,
f.click,
g.click,
h.click,
],
fn=model_inference,
inputs=[imagebox],
outputs=[model_prediction],
).then(
fn=lambda x, y, z: "π₯" if x==y else f"π© The solution is {chr(ord('A') + int(z))}",
inputs=[model_prediction, user_prediction, solution],
outputs=[result],
)
a.click(fn=lambda: "A", inputs=[], outputs=[user_prediction])
b.click(fn=lambda: "B", inputs=[], outputs=[user_prediction])
c.click(fn=lambda: "C", inputs=[], outputs=[user_prediction])
d.click(fn=lambda: "D", inputs=[], outputs=[user_prediction])
e.click(fn=lambda: "E", inputs=[], outputs=[user_prediction])
f.click(fn=lambda: "F", inputs=[], outputs=[user_prediction])
g.click(fn=lambda: "G", inputs=[], outputs=[user_prediction])
h.click(fn=lambda: "H", inputs=[], outputs=[user_prediction])
demo.load()
demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400) |