Spaces:
Runtime error
Runtime error
File size: 14,281 Bytes
46df0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import argparse
import json
from dotenv import load_dotenv
import plotly
import shutil
import smtplib
import ssl
import sys
import textwrap
from data_measurements import dataset_statistics
from data_measurements.zipf import zipf
from huggingface_hub import create_repo, Repository, hf_api
from os import getenv
from os.path import exists, join as pjoin
from pathlib import Path
import utils
from utils import dataset_utils
logs = utils.prepare_logging(__file__)
def load_or_prepare_widgets(ds_args, show_embeddings=False,
show_perplexities=False, use_cache=False):
"""
Loader specifically for the widgets used in the app.
Args:
ds_args:
show_embeddings:
show_perplexities:
use_cache:
Returns:
"""
dstats = dataset_statistics.DatasetStatisticsCacheClass(**ds_args, use_cache=use_cache)
# Header widget
dstats.load_or_prepare_dset_peek()
# General stats widget
dstats.load_or_prepare_general_stats()
# Labels widget
dstats.load_or_prepare_labels()
# Text lengths widget
dstats.load_or_prepare_text_lengths()
if show_embeddings:
# Embeddings widget
dstats.load_or_prepare_embeddings()
if show_perplexities:
# Text perplexities widget
dstats.load_or_prepare_text_perplexities()
# Text duplicates widget
dstats.load_or_prepare_text_duplicates()
# nPMI widget
dstats.load_or_prepare_npmi()
# Zipf widget
dstats.load_or_prepare_zipf()
def load_or_prepare(dataset_args, calculation=False, use_cache=False):
# TODO: Catch error exceptions for each measurement, so that an error
# for one measurement doesn't break the calculation of all of them.
do_all = False
dstats = dataset_statistics.DatasetStatisticsCacheClass(**dataset_args,
use_cache=use_cache)
logs.info("Tokenizing dataset.")
dstats.load_or_prepare_tokenized_df()
logs.info("Calculating vocab.")
dstats.load_or_prepare_vocab()
if not calculation:
do_all = True
if do_all or calculation == "general":
logs.info("\n* Calculating general statistics.")
dstats.load_or_prepare_general_stats()
logs.info("Done!")
logs.info(
"Basic text statistics now available at %s." % dstats.general_stats_json_fid)
if do_all or calculation == "duplicates":
logs.info("\n* Calculating text duplicates.")
dstats.load_or_prepare_text_duplicates()
duplicates_fid_dict = dstats.duplicates_files
logs.info("If all went well, then results are in the following files:")
for key, value in duplicates_fid_dict.items():
logs.info("%s: %s" % (key, value))
if do_all or calculation == "lengths":
logs.info("\n* Calculating text lengths.")
dstats.load_or_prepare_text_lengths()
length_fid_dict = dstats.length_obj.get_filenames()
print("If all went well, then results are in the following files:")
for key, value in length_fid_dict.items():
print("%s: %s" % (key, value))
print()
if do_all or calculation == "labels":
logs.info("\n* Calculating label statistics.")
if dstats.label_field not in dstats.dset.features:
logs.warning("No label field found.")
logs.info("No label statistics to calculate.")
else:
dstats.load_or_prepare_labels()
npmi_fid_dict = dstats.label_files
print("If all went well, then results are in the following files:")
for key, value in npmi_fid_dict.items():
print("%s: %s" % (key, value))
print()
if do_all or calculation == "npmi":
print("\n* Preparing nPMI.")
dstats.load_or_prepare_npmi()
npmi_fid_dict = dstats.npmi_files
print("If all went well, then results are in the following files:")
for key, value in npmi_fid_dict.items():
if isinstance(value, dict):
print(key + ":")
for key2, value2 in value.items():
print("\t%s: %s" % (key2, value2))
else:
print("%s: %s" % (key, value))
print()
if do_all or calculation == "zipf":
logs.info("\n* Preparing Zipf.")
dstats.load_or_prepare_zipf()
logs.info("Done!")
zipf_json_fid, zipf_fig_json_fid, zipf_fig_html_fid = zipf.get_zipf_fids(
dstats.dataset_cache_dir)
logs.info("Zipf results now available at %s." % zipf_json_fid)
logs.info(
"Figure saved to %s, with corresponding json at %s."
% (zipf_fig_html_fid, zipf_fig_json_fid)
)
# Don't do this one until someone specifically asks for it -- takes awhile.
if calculation == "embeddings":
logs.info("\n* Preparing text embeddings.")
dstats.load_or_prepare_embeddings()
# Don't do this one until someone specifically asks for it -- takes awhile.
if calculation == "perplexities":
logs.info("\n* Preparing text perplexities.")
dstats.load_or_prepare_text_perplexities()
def pass_args_to_DMT(dset_name, dset_config, split_name, text_field, label_field, label_names, calculation, dataset_cache_dir, prepare_gui=False, use_cache=True):
if not use_cache:
logs.info("Not using any cache; starting afresh")
dataset_args = {
"dset_name": dset_name,
"dset_config": dset_config,
"split_name": split_name,
"text_field": text_field,
"label_field": label_field,
"label_names": label_names,
"dataset_cache_dir": dataset_cache_dir
}
if prepare_gui:
load_or_prepare_widgets(dataset_args, use_cache=use_cache)
else:
load_or_prepare(dataset_args, calculation=calculation, use_cache=use_cache)
def set_defaults(args):
if not args.config:
args.config = "default"
logs.info("Config name not specified. Assuming it's 'default'.")
if not args.split:
args.split = "train"
logs.info("Split name not specified. Assuming it's 'train'.")
if not args.feature:
args.feature = "text"
logs.info("Text column name not given. Assuming it's 'text'.")
if not args.label_field:
args.label_field = "label"
logs.info("Label column name not given. Assuming it's 'label'.")
return args
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=textwrap.dedent(
"""
Example for hate speech18 dataset:
python3 run_data_measurements.py --dataset="hate_speech18" --config="default" --split="train" --feature="text"
Example for IMDB dataset:
python3 run_data_measurements.py --dataset="imdb" --config="plain_text" --split="train" --label_field="label" --feature="text"
"""
),
)
parser.add_argument(
"-d", "--dataset", required=True, help="Name of dataset to prepare"
)
parser.add_argument(
"-c", "--config", required=False, default="", help="Dataset configuration to prepare"
)
parser.add_argument(
"-s", "--split", required=False, default="", type=str,
help="Dataset split to prepare"
)
parser.add_argument(
"-f",
"--feature",
"-t",
"--text-field",
required=False,
nargs="+",
type=str,
default="",
help="Column to prepare (handled as text)",
)
parser.add_argument(
"-w",
"--calculation",
help="""What to calculate (defaults to everything except embeddings and perplexities).\n
Options are:\n
- `general` (for duplicate counts, missing values, length statistics.)\n
- `duplicates` for duplicate counts\n
- `lengths` for text length distribution\n
- `labels` for label distribution\n
- `embeddings` (Warning: Slow.)\n
- `perplexities` (Warning: Slow.)\n
- `npmi` for word associations\n
- `zipf` for zipfian statistics
""",
)
parser.add_argument(
"-l",
"--label_field",
type=str,
required=False,
default="",
help="Field name for label column in dataset (Required if there is a label field that you want information about)",
)
parser.add_argument('-n', '--label_names', nargs='+', default=[])
parser.add_argument(
"--use_cache",
default=False,
required=False,
action="store_true",
help="Whether to use cached files (Optional)",
)
parser.add_argument("--out_dir", default="cache_dir",
help="Where to write out to.")
parser.add_argument(
"--overwrite_previous",
default=False,
required=False,
action="store_true",
help="Whether to overwrite a previous local cache for these same arguments (Optional)",
)
parser.add_argument(
"--email",
default=None,
help="An email that recieves a message about whether the computation was successful. If email is not None, then you must have EMAIL_PASSWORD=<your email password> for the sender email (data.measurements.tool@gmail.com) in a file named .env at the root of this repo.")
parser.add_argument(
"--push_cache_to_hub",
default=False,
required=False,
action="store_true",
help="Whether to push the cache to an organization on the hub. If you are using this option, you must have HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo.",
)
parser.add_argument("--prepare_GUI_data", default=False, required=False,
action="store_true",
help="Use this to process all of the stats used in the GUI.")
parser.add_argument("--keep_local", default=True, required=False,
action="store_true",
help="Whether to save the data locally.")
orig_args = parser.parse_args()
args = set_defaults(orig_args)
logs.info("Proceeding with the following arguments:")
logs.info(args)
# run_data_measurements.py -d hate_speech18 -c default -s train -f text -w npmi
if args.email is not None:
if Path(".env").is_file():
load_dotenv(".env")
EMAIL_PASSWORD = getenv("EMAIL_PASSWORD")
context = ssl.create_default_context()
port = 465
server = smtplib.SMTP_SSL("smtp.gmail.com", port, context=context)
server.login("data.measurements.tool@gmail.com", EMAIL_PASSWORD)
dataset_cache_name, local_dataset_cache_dir = dataset_utils.get_cache_dir_naming(args.out_dir, args.dataset, args.config, args.split, args.feature)
if not args.use_cache and exists(local_dataset_cache_dir):
if args.overwrite_previous:
shutil.rmtree(local_dataset_cache_dir)
else:
raise OSError("Cached results for this dataset already exist at %s. "
"Delete it or use the --overwrite_previous argument." % local_dataset_cache_dir)
# Initialize the local cache directory
dataset_utils.make_path(local_dataset_cache_dir)
# Initialize the repository
# TODO: print out local or hub cache directory location.
if args.push_cache_to_hub:
repo = dataset_utils.initialize_cache_hub_repo(local_dataset_cache_dir, dataset_cache_name)
# Run the measurements.
try:
pass_args_to_DMT(
dset_name=args.dataset,
dset_config=args.config,
split_name=args.split,
text_field=args.feature,
label_field=args.label_field,
label_names=args.label_names,
calculation=args.calculation,
dataset_cache_dir=local_dataset_cache_dir,
prepare_gui=args.prepare_GUI_data,
use_cache=args.use_cache,
)
if args.push_cache_to_hub:
repo.push_to_hub(commit_message="Added dataset cache.")
computed_message = f"Data measurements have been computed for dataset" \
f" with these arguments: {args}."
logs.info(computed_message)
if args.email is not None:
computed_message += "\nYou can return to the data measurements tool " \
"to view them."
server.sendmail("data.measurements.tool@gmail.com", args.email,
"Subject: Data Measurements Computed!\n\n" + computed_message)
logs.info(computed_message)
except Exception as e:
logs.exception(e)
error_message = f"An error occurred in computing data measurements " \
f"for dataset with arguments: {args}. " \
f"Feel free to make an issue here: " \
f"https://github.com/huggingface/data-measurements-tool/issues"
if args.email is not None:
server.sendmail("data.measurements.tool@gmail.com", args.email,
"Subject: Data Measurements not Computed\n\n" + error_message)
logs.warning("Data measurements not computed. ☹️")
logs.warning(error_message)
return
if not args.keep_local:
# Remove the dataset from local storage - we only want it stored on the hub.
logs.warning("Deleting measurements data locally at %s" % local_dataset_cache_dir)
shutil.rmtree(local_dataset_cache_dir)
else:
logs.info("Measurements made available locally at %s" % local_dataset_cache_dir)
if __name__ == "__main__":
main()
|