File size: 14,281 Bytes
46df0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import json
from dotenv import load_dotenv
import plotly
import shutil
import smtplib
import ssl
import sys
import textwrap
from data_measurements import dataset_statistics
from data_measurements.zipf import zipf
from huggingface_hub import create_repo, Repository, hf_api
from os import getenv
from os.path import exists, join as pjoin
from pathlib import Path
import utils
from utils import dataset_utils

logs = utils.prepare_logging(__file__)

def load_or_prepare_widgets(ds_args, show_embeddings=False,
                            show_perplexities=False, use_cache=False):
    """
    Loader specifically for the widgets used in the app.
    Args:
        ds_args:
        show_embeddings:
        show_perplexities:
        use_cache:

    Returns:

    """
    dstats = dataset_statistics.DatasetStatisticsCacheClass(**ds_args, use_cache=use_cache)
    # Header widget
    dstats.load_or_prepare_dset_peek()
    # General stats widget
    dstats.load_or_prepare_general_stats()
    # Labels widget
    dstats.load_or_prepare_labels()
    # Text lengths widget
    dstats.load_or_prepare_text_lengths()
    if show_embeddings:
        # Embeddings widget
        dstats.load_or_prepare_embeddings()
    if show_perplexities:
        # Text perplexities widget
        dstats.load_or_prepare_text_perplexities()
    # Text duplicates widget
    dstats.load_or_prepare_text_duplicates()
    # nPMI widget
    dstats.load_or_prepare_npmi()
     # Zipf widget
    dstats.load_or_prepare_zipf()


def load_or_prepare(dataset_args, calculation=False, use_cache=False):
    # TODO: Catch error exceptions for each measurement, so that an error
    # for one measurement doesn't break the calculation of all of them.

    do_all = False
    dstats = dataset_statistics.DatasetStatisticsCacheClass(**dataset_args,
                                                            use_cache=use_cache)
    logs.info("Tokenizing dataset.")
    dstats.load_or_prepare_tokenized_df()
    logs.info("Calculating vocab.")
    dstats.load_or_prepare_vocab()

    if not calculation:
        do_all = True

    if do_all or calculation == "general":
        logs.info("\n* Calculating general statistics.")
        dstats.load_or_prepare_general_stats()
        logs.info("Done!")
        logs.info(
            "Basic text statistics now available at %s." % dstats.general_stats_json_fid)

    if do_all or calculation == "duplicates":
        logs.info("\n* Calculating text duplicates.")
        dstats.load_or_prepare_text_duplicates()
        duplicates_fid_dict = dstats.duplicates_files
        logs.info("If all went well, then results are in the following files:")
        for key, value in duplicates_fid_dict.items():
            logs.info("%s: %s" % (key, value))

    if do_all or calculation == "lengths":
        logs.info("\n* Calculating text lengths.")
        dstats.load_or_prepare_text_lengths()
        length_fid_dict = dstats.length_obj.get_filenames()
        print("If all went well, then results are in the following files:")
        for key, value in length_fid_dict.items():
            print("%s: %s" % (key, value))
        print()

    if do_all or calculation == "labels":
        logs.info("\n* Calculating label statistics.")
        if dstats.label_field not in dstats.dset.features:
            logs.warning("No label field found.")
            logs.info("No label statistics to calculate.")
        else:
            dstats.load_or_prepare_labels()
            npmi_fid_dict = dstats.label_files
            print("If all went well, then results are in the following files:")
            for key, value in npmi_fid_dict.items():
                print("%s: %s" % (key, value))
            print()

    if do_all or calculation == "npmi":
        print("\n* Preparing nPMI.")
        dstats.load_or_prepare_npmi()
        npmi_fid_dict = dstats.npmi_files
        print("If all went well, then results are in the following files:")
        for key, value in npmi_fid_dict.items():
            if isinstance(value, dict):
                print(key + ":")
                for key2, value2 in value.items():
                    print("\t%s: %s" % (key2, value2))
            else:
                print("%s: %s" % (key, value))
        print()

    if do_all or calculation == "zipf":
        logs.info("\n* Preparing Zipf.")
        dstats.load_or_prepare_zipf()
        logs.info("Done!")
        zipf_json_fid, zipf_fig_json_fid, zipf_fig_html_fid = zipf.get_zipf_fids(
            dstats.dataset_cache_dir)
        logs.info("Zipf results now available at %s." % zipf_json_fid)
        logs.info(
            "Figure saved to %s, with corresponding json at %s."
            % (zipf_fig_html_fid, zipf_fig_json_fid)
        )

    # Don't do this one until someone specifically asks for it -- takes awhile.
    if calculation == "embeddings":
        logs.info("\n* Preparing text embeddings.")
        dstats.load_or_prepare_embeddings()

    # Don't do this one until someone specifically asks for it -- takes awhile.
    if calculation == "perplexities":
        logs.info("\n* Preparing text perplexities.")
        dstats.load_or_prepare_text_perplexities()

def pass_args_to_DMT(dset_name, dset_config, split_name, text_field, label_field, label_names, calculation, dataset_cache_dir, prepare_gui=False, use_cache=True):
    if not use_cache:
        logs.info("Not using any cache; starting afresh")
    dataset_args = {
        "dset_name": dset_name,
        "dset_config": dset_config,
        "split_name": split_name,
        "text_field": text_field,
        "label_field": label_field,
        "label_names": label_names,
        "dataset_cache_dir": dataset_cache_dir
    }
    if prepare_gui:
        load_or_prepare_widgets(dataset_args, use_cache=use_cache)
    else:
        load_or_prepare(dataset_args, calculation=calculation, use_cache=use_cache)

def set_defaults(args):
    if not args.config:
        args.config = "default"
        logs.info("Config name not specified. Assuming it's 'default'.")
    if not args.split:
        args.split = "train"
        logs.info("Split name not specified. Assuming it's 'train'.")
    if not args.feature:
        args.feature = "text"
        logs.info("Text column name not given. Assuming it's 'text'.")
    if not args.label_field:
        args.label_field = "label"
        logs.info("Label column name not given. Assuming it's 'label'.")
    return args

def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.RawDescriptionHelpFormatter,
        description=textwrap.dedent(
            """

         Example for hate speech18 dataset:
         python3 run_data_measurements.py --dataset="hate_speech18" --config="default" --split="train" --feature="text"

         Example for IMDB dataset:
         python3 run_data_measurements.py --dataset="imdb" --config="plain_text" --split="train" --label_field="label" --feature="text"
         """
        ),
    )

    parser.add_argument(
        "-d", "--dataset", required=True, help="Name of dataset to prepare"
    )
    parser.add_argument(
        "-c", "--config", required=False, default="", help="Dataset configuration to prepare"
    )
    parser.add_argument(
        "-s", "--split", required=False, default="", type=str,
        help="Dataset split to prepare"
    )
    parser.add_argument(
        "-f",
        "--feature",
        "-t",
        "--text-field",
        required=False,
        nargs="+",
        type=str,
        default="",
        help="Column to prepare (handled as text)",
    )
    parser.add_argument(
        "-w",
        "--calculation",
        help="""What to calculate (defaults to everything except embeddings and perplexities).\n
                                                    Options are:\n

                                                    - `general` (for duplicate counts, missing values, length statistics.)\n

                                                    - `duplicates` for duplicate counts\n

                                                    - `lengths` for text length distribution\n

                                                    - `labels` for label distribution\n

                                                    - `embeddings` (Warning: Slow.)\n

                                                    - `perplexities` (Warning: Slow.)\n

                                                    - `npmi` for word associations\n

                                                    - `zipf` for zipfian statistics
                                                    """,
    )
    parser.add_argument(
        "-l",
        "--label_field",
        type=str,
        required=False,
        default="",
        help="Field name for label column in dataset (Required if there is a label field that you want information about)",
    )
    parser.add_argument('-n', '--label_names', nargs='+', default=[])
    parser.add_argument(
        "--use_cache",
        default=False,
        required=False,
        action="store_true",
        help="Whether to use cached files (Optional)",
    )
    parser.add_argument("--out_dir", default="cache_dir",
                        help="Where to write out to.")
    parser.add_argument(
        "--overwrite_previous",
        default=False,
        required=False,
        action="store_true",
        help="Whether to overwrite a previous local cache for these same arguments (Optional)",
    )
    parser.add_argument(
        "--email",
        default=None,
        help="An email that recieves a message about whether the computation was successful. If email is not None, then you must have EMAIL_PASSWORD=<your email password> for the sender email (data.measurements.tool@gmail.com) in a file named .env at the root of this repo.")
    parser.add_argument(
        "--push_cache_to_hub",
        default=False,
        required=False,
        action="store_true",
        help="Whether to push the cache to an organization on the hub. If you are using this option, you must have HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo.",
    )
    parser.add_argument("--prepare_GUI_data", default=False, required=False,
                        action="store_true",
                        help="Use this to process all of the stats used in the GUI.")
    parser.add_argument("--keep_local", default=True, required=False,
                        action="store_true",
                        help="Whether to save the data locally.")
    orig_args = parser.parse_args()
    args = set_defaults(orig_args)
    logs.info("Proceeding with the following arguments:")
    logs.info(args)
    # run_data_measurements.py -d hate_speech18 -c default -s train -f text -w npmi
    if args.email is not None:
        if Path(".env").is_file():
            load_dotenv(".env")
        EMAIL_PASSWORD = getenv("EMAIL_PASSWORD")
        context = ssl.create_default_context()
        port = 465
        server = smtplib.SMTP_SSL("smtp.gmail.com", port, context=context)
        server.login("data.measurements.tool@gmail.com", EMAIL_PASSWORD)

    dataset_cache_name, local_dataset_cache_dir = dataset_utils.get_cache_dir_naming(args.out_dir, args.dataset, args.config, args.split, args.feature)
    if not args.use_cache and exists(local_dataset_cache_dir):
        if args.overwrite_previous:
            shutil.rmtree(local_dataset_cache_dir)
        else:
            raise OSError("Cached results for this dataset already exist at %s. "
                          "Delete it or use the --overwrite_previous argument." % local_dataset_cache_dir)

    # Initialize the local cache directory
    dataset_utils.make_path(local_dataset_cache_dir)

    # Initialize the repository
    # TODO: print out local or hub cache directory location.
    if args.push_cache_to_hub:
        repo = dataset_utils.initialize_cache_hub_repo(local_dataset_cache_dir, dataset_cache_name)
    # Run the measurements.
    try:
        pass_args_to_DMT(
            dset_name=args.dataset,
            dset_config=args.config,
            split_name=args.split,
            text_field=args.feature,
            label_field=args.label_field,
            label_names=args.label_names,
            calculation=args.calculation,
            dataset_cache_dir=local_dataset_cache_dir,
            prepare_gui=args.prepare_GUI_data,
            use_cache=args.use_cache,
        )
        if args.push_cache_to_hub:
            repo.push_to_hub(commit_message="Added dataset cache.")
        computed_message = f"Data measurements have been computed for dataset" \
                           f" with these arguments: {args}."
        logs.info(computed_message)
        if args.email is not None:
            computed_message += "\nYou can return to the data measurements tool " \
                                "to view them."
            server.sendmail("data.measurements.tool@gmail.com", args.email,
                            "Subject: Data Measurements Computed!\n\n" + computed_message)
            logs.info(computed_message)
    except Exception as e:
        logs.exception(e)
        error_message = f"An error occurred in computing data measurements " \
                        f"for dataset with arguments: {args}. " \
                        f"Feel free to make an issue here: " \
                        f"https://github.com/huggingface/data-measurements-tool/issues"
        if args.email is not None:
            server.sendmail("data.measurements.tool@gmail.com", args.email,
                            "Subject: Data Measurements not Computed\n\n" + error_message)
        logs.warning("Data measurements not computed. ☹️")
        logs.warning(error_message)
        return
    if not args.keep_local:
        # Remove the dataset from local storage - we only want it stored on the hub.
        logs.warning("Deleting measurements data locally at %s" % local_dataset_cache_dir)
        shutil.rmtree(local_dataset_cache_dir)
    else:
        logs.info("Measurements made available locally at %s" % local_dataset_cache_dir)


if __name__ == "__main__":
    main()