Spaces:
Runtime error
Runtime error
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. | |
# %% auto 0 | |
__all__ = ['HF_TOKEN', 'title', 'description', 'get_model_endpoint_params', 'query_chat_api', 'inference_chat'] | |
# %% app.ipynb 0 | |
import gradio as gr | |
import requests | |
import json | |
import requests | |
import os | |
from pathlib import Path | |
from dotenv import load_dotenv | |
# %% app.ipynb 1 | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# %% app.ipynb 2 | |
def get_model_endpoint_params(model_id): | |
if "joi" in model_id: | |
headers = None | |
max_new_tokens_supported = True | |
return "https://joi-20b.ngrok.io/generate", headers, max_new_tokens_supported | |
else: | |
max_new_tokens_supported = False | |
headers = {"Authorization": f"Bearer {HF_TOKEN}", "x-wait-for-model": "1"} | |
return f"https://api-inference.huggingface.co/models/{model_id}", headers, max_new_tokens_supported | |
# %% app.ipynb 3 | |
def query_chat_api( | |
model_id, | |
inputs, | |
temperature, | |
top_p | |
): | |
endpoint, headers, max_new_tokens_supported = get_model_endpoint_params(model_id) | |
payload = { | |
"inputs": inputs, | |
"parameters": { | |
"temperature": temperature, | |
"top_p": top_p, | |
"do_sample": True, | |
}, | |
} | |
if max_new_tokens_supported is True: | |
payload["parameters"]["max_new_tokens"] = 100 | |
payload["parameters"]["repetition_penalty"]: 1.03 | |
# payload["parameters"]["stop"] = ["Human:"] | |
else: | |
payload["parameters"]["max_length"] = 512 | |
response = requests.post(endpoint, json=payload, headers=headers) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
return "Error: " + response.text | |
# %% app.ipynb 5 | |
def inference_chat( | |
model_id, | |
text_input, | |
temperature, | |
top_p, | |
history=[], | |
): | |
if "joi" in model_id: | |
prompt_filename = "langchain_default.json" | |
else: | |
prompt_filename = "anthropic_hhh_single.json" | |
print(prompt_filename) | |
with open(f"prompt_templates/{prompt_filename}", "r") as f: | |
prompt_template = json.load(f) | |
history_input = "" | |
for idx, text in enumerate(history): | |
if idx % 2 == 0: | |
history_input += f"Human: {text}\n" | |
else: | |
history_input += f"Assistant: {text}\n" | |
history_input = history_input.rstrip("\n") | |
inputs = prompt_template["prompt"].format(human_input=text_input, history=history_input) | |
history.append(text_input) | |
print(f"History: {history}") | |
print(f"Inputs: {inputs}") | |
output = query_chat_api(model_id, inputs, temperature, top_p) | |
if isinstance(output, list): | |
output = output[0] | |
output = output["generated_text"].rstrip(" Human:") | |
history.append(" " + output) | |
chat = [ | |
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) | |
] # convert to tuples of list | |
return {chatbot: chat, state: history} | |
# %% app.ipynb 21 | |
title = """<h1 align="center">Chatty Language Models</h1>""" | |
description = """Pretrained language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
Human: <utterance> | |
Assistant: <utterance> | |
Human: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of several language models conditioned on different conversational prompts. The models are trained on different datasets and have different objectives, so they will have different personalities and strengths. | |
""" | |
# %% app.ipynb 23 | |
with gr.Blocks( | |
css=""" | |
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px} | |
#component-21 > div.wrap.svelte-w6rprc {height: 600px;} | |
""" | |
) as iface: | |
state = gr.State([]) | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_id = gr.Dropdown( | |
choices=["google/flan-t5-xl" ,"Rallio67/joi_20B_instruct_alpha"], | |
value="google/flan-t5-xl", | |
label="Model", | |
interactive=True, | |
) | |
# prompt_template = gr.Dropdown( | |
# choices=[ | |
# "langchain_default", | |
# "openai_chatgpt", | |
# "deepmind_sparrow", | |
# "deepmind_gopher", | |
# "anthropic_hhh", | |
# ], | |
# value="langchain_default", | |
# label="Prompt Template", | |
# interactive=True, | |
# ) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0., | |
maximum=1.0, | |
value=0.8, | |
step=0.05, | |
interactive=True, | |
label="Top-p (nucleus sampling)", | |
) | |
with gr.Column(scale=1.8): | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
label="Chat Output", | |
) | |
with gr.Row(): | |
chat_input = gr.Textbox(lines=1, label="Chat Input") | |
chat_input.submit( | |
inference_chat, | |
[ | |
model_id, | |
chat_input, | |
temperature, | |
top_p, | |
state, | |
], | |
[chatbot, state], | |
) | |
with gr.Row(): | |
clear_button = gr.Button(value="Clear", interactive=True) | |
clear_button.click( | |
lambda: ("", [], []), | |
[], | |
[chat_input, chatbot, state], | |
queue=False, | |
) | |
submit_button = gr.Button( | |
value="Submit", interactive=True, variant="primary" | |
) | |
submit_button.click( | |
inference_chat, | |
[ | |
model_id, | |
chat_input, | |
temperature, | |
top_p, | |
state, | |
], | |
[chatbot, state], | |
) | |
iface.launch() | |