File size: 14,300 Bytes
73c4e57
84e19b3
 
 
 
 
 
 
 
 
daf9fda
419bcbf
 
 
a8db406
 
e727f06
 
 
 
 
 
 
 
 
21f7e86
 
e727f06
21f7e86
 
 
e727f06
 
 
21f7e86
e727f06
21f7e86
e727f06
21f7e86
e727f06
 
 
21f7e86
 
e727f06
21f7e86
 
e727f06
21f7e86
 
e727f06
 
 
21f7e86
 
e727f06
21f7e86
 
e727f06
21f7e86
 
e727f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9577fd2
 
 
e727f06
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# PART 0.5: Import necessary libraries - UNMARK # if runned local
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import zscore
import geopandas as gpd
import altair as alt
from vega_datasets import data
import re

# USED FOR OFFLINE VERSION (TO ALSO DOWNLOAD THE ZIP FILES FROM CLOUD)
# from duckduckgo_search import DDGS
# import zipfile
# import requests

# PART 1: Function to load the data parts and use pd.concat to combine the 3 parts to one dataset
@st.cache_data  # Cache the function to enhance performance - tells streamlit to keep the dataset in memory/cache
def loading_dataset():
    # Setting Title
    st.title("πŸ’° KIVA - Microloans Statistics πŸͺ™")

    # LOADING BAR:
    progress_bar = st.progress(2, text="Setting urls...")

    # PLEASE NOTICE - SOME PARTS HERE IS DISABLED DUE TO CSV FILES ARE ALREADY IN REPO  !!!!
    # Defination of url-paths
#    url1 = 'https://github.com/aaubs/ds-master/raw/main/data/assignments_datasets/KIVA/kiva_loans_part_0.csv.zip'
#    url2 = 'https://github.com/aaubs/ds-master/raw/main/data/assignments_datasets/KIVA/kiva_loans_part_1.csv.zip'
#    url3 = 'https://github.com/aaubs/ds-master/raw/main/data/assignments_datasets/KIVA/kiva_loans_part_2.csv.zip'

    # Loading the urls into requests to download data
    progress_bar.progress(9, text="Downloading datasets...1/3")
#    response1 = requests.get(url1)
    progress_bar.progress(32, text="Downloading datasets...2/3")
#    response2 = requests.get(url2)
    progress_bar.progress(50, text="Downloading datasets...3/3")
#    response3 = requests.get(url3)

    # Saves the .zip data as files
    progress_bar.progress(55, text="Saving dataset zip-file...1/3")
#    with open("kiva_loans_part_0.csv.zip", "wb") as file:
#        file.write(response1.content)
    progress_bar.progress(60, text="Saving dataset zip-file...2/3")
#    with open("kiva_loans_part_1.csv.zip", "wb") as file:
#        file.write(response2.content)
    progress_bar.progress(65, text="Saving dataset zip-file...3/3")
#    with open("kiva_loans_part_2.csv.zip", "wb") as file:
#        file.write(response3.content)

    # Unzip the files to get .csv
    progress_bar.progress(70, text="Unzipping dataset...1/3")
#    with zipfile.ZipFile("kiva_loans_part_0.csv.zip", 'r') as zip_ref:
#        zip_ref.extractall()
    progress_bar.progress(75, text="Unzipping dataset...2/3")
#    with zipfile.ZipFile("kiva_loans_part_1.csv.zip", 'r') as zip_ref:
#        zip_ref.extractall()
    progress_bar.progress(81, text="Unzipping dataset...3/3")
#    with zipfile.ZipFile("kiva_loans_part_2.csv.zip", 'r') as zip_ref:
#        zip_ref.extractall()

    # Loading partial datasets
    progress_bar.progress(83, text="Importing partial datasets...")
    data_part1 = pd.read_csv("kiva_loans_part_0.csv")
    progress_bar.progress(85, text="Importing partial datasets...")
    data_part2 = pd.read_csv("kiva_loans_part_1.csv")
    progress_bar.progress(87, text="Importing partial datasets...")
    data_part3 = pd.read_csv("kiva_loans_part_2.csv")

    # Combining the datasets into one df using pd.concat
    progress_bar.progress(89, text="Merging datasets...")
    data = pd.concat([data_part1, data_part2, data_part3])
    
    # PART 2: CLEANING DATA & MANIPULATION

    # Drop columns we're not going to use
    progress_bar.progress(91, text="Dropping irrelevant columns & cleaning dataset...")
    data = data.drop(['tags', 'use', 'currency', 'country_code'], axis=1)

    #Dropping missing values using dropna
    data.dropna(inplace=True)

    #Removal of outliers
    progress_bar.progress(93, text="Removing outliers...")
    z_scores = zscore(data['loan_amount'])

    # Get boolean array indicating the presence of outliers
    # Using 2 & -2 z_scores to get 95% of data within 2 standard deviations
    data['outlier_loan_amount'] = (z_scores > 2) | (z_scores < -2)

    #Removing outliers
    data = data[~data['outlier_loan_amount']]

# GENDER CLASSIFICATION (GROUPING GENDERS)
    progress_bar.progress(93, text="Creating gender groups...")
    loan_gender = data

    # COUNT MALE & FEMALE BORROWERS 
    progress_bar.progress(94, text="Creating gender groups...")
    loan_gender['male_borrowers'] = loan_gender['borrower_genders'].apply(lambda x: len(re.findall(r'\bmale', x)))
    loan_gender['female_borrowers'] = loan_gender['borrower_genders'].apply(lambda x: len(re.findall(r'\bfemale', x)))

    # CALCULATE TOTAL BORROWER COUNT
    progress_bar.progress(96, text="Calculating gender groups...")
    loan_gender['borrowers_count'] = loan_gender['male_borrowers'] + loan_gender['female_borrowers']

    # HANDLE SITUATIONS WHERE 'BORROWERS_COUNT' IS 0 TO AVOID DIVISION BY 0
    progress_bar.progress(97, text="Creating gender groups...")
    loan_gender['male_borrower_ratio'] = loan_gender['male_borrowers'] / loan_gender['borrowers_count'].replace(0, 1)

    # FUNCTION TO CLASSIFY GENDER BASED ON RATIO
    def classify_genders(ratio):
        if ratio == 1:
            return 'male group'
        elif ratio == 0:
            return 'female group'
        else:
            return 'mixed group'
    progress_bar.progress(98, text="Applying gender mapping...")
    # APPLY GENDER CLASSIFICATION
    data['gender_class'] = loan_gender['male_borrower_ratio'].apply(classify_genders)

    #Done
    progress_bar.progress(100, None)

    return data

data = loading_dataset()

# PART 3: Setting up title and filter-sideheader
st.sidebar.header("Filters πŸ“Š")
#########################################################################################################################
# GENDER SIDEBAR

# CREATE LIST OVER GENDERS
all_gender = data['gender_class'].unique().tolist() # - REMOVED DUE TO GENDER WONT BE UPDATED IN DATASET

# GENDER SIDEBAR MULTISELECT
selected_gender = st.sidebar.multiselect("Select Gender Group πŸ§‘β€πŸ§‘β€πŸ§’", all_gender, default=all_gender)

# Filtration of data based on sidebar
filtered_data = data[data['gender_class'].isin(selected_gender)]
#########################################################################################################################
# SECTOR SIDEBAR

# CREATE LIST OVER ALL SECTORS
all_sectors = data['sector'].unique().tolist()

# SECTOR SIDEBAR MULTISELECT
selected_sector = st.sidebar.multiselect("Select Sectors πŸ’Ό", all_sectors, default=all_sectors)

# Filtration of data based on sidebar
filtered_data = filtered_data[filtered_data['sector'].isin(selected_sector)]
#########################################################################################################################
# COUNTRY SIDEBAR

# CALCULATE TOP 10 COUNTRIES & CREATE A LIST
top_countries = data.groupby('country').size().nlargest(10).index.tolist()

# COUNTRY SIDEBAR MULTISELECT
selected_country = st.sidebar.multiselect(
    "Select Country πŸ‡ΊπŸ‡³", top_countries, default=top_countries)

# Filtration of data based on sidebar
filtered_data = filtered_data[filtered_data['country'].isin(selected_country)]
#########################################################################################################################
# CHECK IF CHOICE HAS BEEN MADE ON GENDER GROUP, SECTORS & COUNTRY
# GENDER - NO CHOICE WARNING 
if not selected_gender:
    st.warning("Please select a gender group from the sidebar ⚠️")
    st.stop()

# SECTOR - NO CHOICE WARNING 
if not selected_sector:
    st.warning("Please select a sector from the sidebar ⚠️")
    st.stop()

# COUNTRY - NO CHOICE WARNING 
if not selected_country:
    st.warning("Please select a country from the sidebar ⚠️")
    st.stop()
#########################################################################################################################
# PART 4: DATA OVERVIEW
with st.expander("GENERAL OVERVIEW OF DATA & DESCRIPTIVE STATISTICS (all data πŸ—ΊοΈ)"):
    st.header("Dataset Overview (all data)")
    st.markdown("data.head():")
    st.table(data.head())
    st.header("Descriptive Statistics (all data)")
    st.markdown("data.describe().T")
    st.dataframe(data.describe().T)

# PART 4.5: DESCRIPTIVE STATISTICS 
with st.expander("FILTERED DESCRIPTIVE STATISTICS (side-filtered data πŸ“Š)"):
    st.header("Descriptive Statistics (based on sidebar-filter)")
    st.markdown("filtered_data.describe().T")
    st.dataframe(filtered_data.describe().T)

#########################################################################################################################
# PART 5: VISUALIZATIONS
# Dropdown to select the type of visualization
visualization_option = st.selectbox(
    "Select Visualization 🎨", 
    ["Records of Loans Issued By Sector & Country (Top 10 Countries)", 
     "KDE Plot - By Sector, Country & Total",
     "Box Plot - Country, Sector & Gender Group",
     # "Stacked Bar Chart - Mean Loan Amount by Gender, Sector & Country", REMOVED
     "Heatmap of Average Loan by Sector & Country",
     "Frequency of Funded Loans Over Time"])

if visualization_option == "Records of Loans Issued By Sector & Country (Top 10 Countries)":
    # Bar chart for Records of Loans Issued By Sector & Country (Top 10 Countries)
    chart = alt.Chart(filtered_data).mark_bar().encode(
        x='loan_amount',
        y='count()',
        color='sector',
    ).properties(
        title='Records of Loans Issued By Sector & Country (Top 10 Countries)'
    )
    st.altair_chart(chart, use_container_width=True)

    # Bar chart for Countries only
    chart = alt.Chart(filtered_data).mark_bar().encode(
        x='loan_amount',
        y='count()',
        color='country',
    ).properties(
        title='Records of Loans Issued By Country Only (Top 10 Countries)'
    )
    st.altair_chart(chart, use_container_width=True)

elif visualization_option == "KDE Plot - By Sector, Country & Total":
    # KDE plot - SECTOR
    plt.figure(figsize=(10, 6))
    sns.kdeplot(data=filtered_data, x='loan_amount', hue='sector', fill=True, palette='gist_rainbow')
    plt.xlabel('Loan Amount')
    plt.ylabel('Density')
    plt.title('KDE Plot of Loan Amount by Sector')
    st.pyplot(plt)

    # KDE plot - Country
    plt.figure(figsize=(10, 6))
    sns.kdeplot(data=filtered_data, x='loan_amount', hue='country', fill=True, palette='gist_rainbow')
    plt.xlabel('Loan Amount')
    plt.ylabel('Density')
    plt.title('KDE Plot of Loan Amount by Country')
    st.pyplot(plt)

    # KDE plot - TOTAL
    plt.figure(figsize=(10, 6))
    sns.kdeplot(data=filtered_data, x='loan_amount', fill=True, palette='gist_rainbow')
    plt.xlabel('Loan Amount')
    plt.ylabel('Density')
    plt.title('KDE Plot of Total Loan Amount')
    st.pyplot(plt)

elif visualization_option == "Box Plot - Country, Sector & Gender Group":
    plt.figure(figsize=(12, 8))
    sns.boxplot(data=filtered_data, x='sector', y='loan_amount', hue='gender_class', palette='gist_rainbow')
    plt.title('Box Plot of Loan Amounts By Sector and Gender Group')
    plt.xlabel('Sector')
    plt.ylabel('Loan Amount')
    plt.xticks(rotation=45)
    st.pyplot(plt)
    
    plt.figure(figsize=(12, 8))
    sns.boxplot(data=filtered_data, x='sector', y='loan_amount', hue='country', palette='gist_rainbow')
    plt.title('Box Plot of Loan Amounts By Country (top 10) & Sector')
    plt.xlabel('Sector')
    plt.ylabel('Country')
    plt.xticks(rotation=45)
    st.pyplot(plt)

elif visualization_option == "Stacked Bar Chart - Mean Loan Amount by Gender, Sector & Country":
    gender_sector_country = filtered_data.groupby(['sector', 'country', 'gender_class'])['loan_amount'].mean().unstack()
    gender_sector_country.plot(kind='barh', stacked=True, colormap='coolwarm', figsize=(14, 26))
    plt.title('Stacked Bar Chart of Mean Loan Amount by Gender Sector & Country')
    plt.ylabel('Sector and Country')
    plt.xlabel('Mean Loan Amount')
    plt.xticks(rotation=0)
    st.pyplot(plt)

    gender_sector = filtered_data.groupby(['sector', 'gender_class'])['loan_amount'].mean().unstack()
    gender_sector.plot(kind='barh', stacked=True, colormap='coolwarm', figsize=(14, 8))
    plt.title('GENDER & SECTOR ONLY: Stacked Bar Chart of Mean Loan Amount by Gender & Sector')
    plt.ylabel('Sector')
    plt.xlabel('Mean Loan Amount')
    plt.xticks(rotation=0)
    st.pyplot(plt)

    gender_country = filtered_data.groupby(['country', 'gender_class'])['loan_amount'].mean().unstack()
    gender_country.plot(kind='barh', stacked=True, colormap='coolwarm', figsize=(14, 8))
    plt.title('GENDER & COUNTRY ONLY: Stacked Bar Chart of Mean Loan Amount by Gender & Country')
    plt.ylabel('Country')
    plt.xlabel('Mean Loan Amount')
    plt.xticks(rotation=0)
    st.pyplot(plt)

elif visualization_option == "Heatmap of Average Loan by Sector & Country":
    heatmap_data = filtered_data.pivot_table(index='sector', columns='country', values='loan_amount', aggfunc='mean')
    plt.figure(figsize=(12, 8))
    sns.heatmap(heatmap_data, cmap="coolwarm", annot=True, fmt=".1f")
    plt.title('Heatmap of Average Loan by Sector & Country')
    st.pyplot(plt)

elif visualization_option == "Frequency of Funded Loans Over Time":
    time_data = filtered_data
    
    # CONVERTING 
    time_data['funded_time'] = pd.to_datetime(time_data['funded_time'])

    # Set date column as index:
    time_data.set_index('funded_time', inplace=True)

    #Resample the data to a monthly frequency (can also be yearly, daily, etc.)
    funded_trend = time_data.resample('M').size()

    #plot the frequency of searches over time
    plt.figure(figsize=(12, 6))
    plt.plot(funded_trend, label='Total Funded Loans', color='blue')

    #add labels and title
    plt.title('Frequency of Funded Loans Over Time')
    plt.xlabel('Date')
    plt.ylabel('Number of Funded Loans')
    plt.legend()
    plt.grid(True)
    st.pyplot(plt)

# if st.button("AI Assitant, explain!!!"):
#    results = DDGS().chat("You're a smart data analyst. Provide and interpretate the results. Remember to check which Sectors, Gender groups, Country." + str((filtered_data.describe())))
#    st.write(results)

# PART BONUS - DEBUGGING
with st.expander("DEBUGGING πŸ€“"):
    st.write("Selected sectors:", selected_sector)
    st.write("Selected countries:", selected_country)
    st.write("Filtered data:", filtered_data)