Spaces:
Sleeping
Sleeping
File size: 19,194 Bytes
4d1746c 0157229 4d1746c 0157229 4d1746c 0157229 4d1746c 0157229 4d1746c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import json
import time
from copy import deepcopy
from multi_turn_eval.multi_turn_utils import (
STATELESS_CLASSES,
execute_multi_turn_func_call,
is_empty_execute_response,
)
from constant import (
DEFAULT_USER_PROMPT_FOR_ADDITIONAL_FUNCTION_FC,
DEFAULT_USER_PROMPT_FOR_ADDITIONAL_FUNCTION_PROMPTING,
MAXIMUM_STEP_LIMIT,
)
from model_style import ModelStyle
from overrides import final
class BaseHandler:
model_name: str
model_style: ModelStyle
def __init__(self, model_name, temperature) -> None:
self.model_name = model_name
# Replace the slash with underscore to avoid creating subdirectories
# Replace the dash and dot with underscore for valid variable name
self.model_name_underline_replaced = (
model_name.replace("/", "_").replace("-", "_").replace(".", "_")
)
self.temperature = temperature
self.is_fc_model = False # Whether the model is a function calling model
@final
def inference(self, test_entry: dict, include_input_log: bool=False, include_state_log: bool=False):
# This method is used to retrive model response for each model.
return self.inference_multi_turn_FC(test_entry, include_input_log, include_state_log)
@final
def inference_multi_turn_FC(
self, test_entry: dict, include_input_log: bool, include_state_log: bool
):
initial_config: dict = test_entry["initial_config"]
involved_classes: list = test_entry["involved_classes"]
test_entry_id: str = test_entry["id"]
test_category: str = test_entry_id.rsplit("_", 1)[0]
# This is only for the miss function category
# A mapping from turn index to function to holdout
holdout_function: dict[int, list] = test_entry.get("missed_function", {})
total_input_token_count: list[list[float]] = []
total_output_token_count: list[list[float]] = []
total_latency: list[list[float]] = []
all_model_response: list[list] = (
[]
) # The model response that will be used for later evaluation
all_inference_log: list[list[dict]] = (
[]
) # The debugging log for human to understand
force_quit = False # Whether the model has been forced to quit. If True, this whole entry will be failed.
# Execute no function call, but just to get a reference to all the instances to get the initial state for logging purpose
if include_state_log:
_, involved_instances = execute_multi_turn_func_call(
[],
initial_config,
involved_classes,
self.model_name_underline_replaced,
test_entry_id,
long_context=(
"long_context" in test_category or "composite" in test_category
),
is_evaL_run=False,
)
state_log = []
for class_name, class_instance in involved_instances.items():
if class_name in STATELESS_CLASSES:
continue
class_instance = deepcopy(class_instance) # Avoid modification in future turns
state_log.append(
{
"role": "state_info",
"class_name": class_name,
"content": {
key: value
for key, value in vars(class_instance).items()
if not key.startswith("_")
},
}
)
all_inference_log.append(state_log)
inference_data: dict = {}
inference_data = self._pre_query_processing_FC(inference_data, test_entry)
inference_data = self._compile_tools(inference_data, test_entry)
all_multi_turn_messages: list[list[dict]] = test_entry["question"]
for turn_idx, current_turn_message in enumerate(all_multi_turn_messages):
current_turn_message: list[dict]
if str(turn_idx) in holdout_function:
test_entry["function"].extend(holdout_function[str(turn_idx)])
# Since we have added new functions, we need to recompile the tools
inference_data = self._compile_tools(inference_data, test_entry)
assert (
len(current_turn_message) == 0
), "Holdout turn should not have user message."
current_turn_message = [
{
"role": "user",
"content": DEFAULT_USER_PROMPT_FOR_ADDITIONAL_FUNCTION_FC,
}
]
if turn_idx == 0:
inference_data = self.add_first_turn_message_FC(
inference_data, [current_turn_message]
)
else:
assert isinstance(current_turn_message, list), "Current turn message is not a list"
inference_data = self._add_next_turn_user_message_FC(
inference_data, current_turn_message
)
current_turn_response = []
current_turn_inference_log: list[dict] = {"begin_of_turn_query": current_turn_message}
current_turn_input_token_count: list[float] = []
current_turn_output_token_count: list[float] = []
current_turn_latency: list[float] = []
involved_instances = None
count = 0
while True:
print("-" * 100)
print(
f"ID: {test_entry_id.replace('multi_turn_', '')}, Turn: {turn_idx}, Step: {count}"
)
current_step_inference_log: list[dict] = []
# Add to the current_turn_inference_log at beginning of each step so that we don't need to bother dealing with the break statements
current_turn_inference_log[f"step_{count}"] = current_step_inference_log
start_time = time.time()
api_response = self._query_FC(inference_data)
query_latency = time.time() - start_time
# This part of logging is disabled by default because it is too verbose and will make the result file extremely large
# It is only useful to see if the inference pipeline is working as expected (eg, does it convert all the inputs correctly)
if include_input_log:
current_step_inference_log.append(
{
"role": "handler_log",
"content": inference_data.get("inference_input_log", ""),
}
)
# Try parsing the model response
model_response_data = self._parse_query_response_FC(api_response)
model_responses = model_response_data["model_responses"]
# Add the assistant message to the chat history
inference_data = self._add_assistant_message_FC(
inference_data, model_response_data
)
# Process the metadata
current_turn_input_token_count.append(model_response_data["input_token"])
current_turn_output_token_count.append(model_response_data["output_token"])
current_turn_latency.append(query_latency)
current_turn_response.append(model_responses)
current_step_inference_log.append(
{"role": "assistant", "content": model_responses}
)
# Try decoding the model response
try:
decoded_model_responses = self.decode_execute(model_responses)
current_step_inference_log.append(
{
"role": "handler_log",
"content": "Successfully decoded model response.",
"model_response_decoded": decoded_model_responses,
}
)
if is_empty_execute_response(decoded_model_responses):
print("Empty response from the model. Proceed to next turn.")
current_step_inference_log.append(
{
"role": "handler_log",
"content": f"Empty response from the model. Proceed to next turn.",
"model_response_decoded": decoded_model_responses,
}
)
break
except Exception as e:
print("Failed to decode the model response. Proceed to next turn.")
current_step_inference_log.append(
{
"role": "handler_log",
"content": f"Error decoding the model response. Proceed to next turn.",
"error": str(e),
}
)
yield ("summary", model_responses, None, self.model_name)
break
# Obtain the execution results
execution_results, involved_instances = execute_multi_turn_func_call(
decoded_model_responses,
initial_config,
involved_classes,
self.model_name_underline_replaced,
test_entry_id,
long_context=(
"long_context" in test_category or "composite" in test_category
),
is_evaL_run=False,
)
# Add the execution results to the chat history for the next turn
inference_data = self._add_execution_results_FC(
inference_data, execution_results, model_response_data
)
for execution_result in execution_results:
current_step_inference_log.append(
{
"role": "tool",
"content": execution_result,
}
)
execution_results = deepcopy(execution_results)
for i in range(len(execution_results)):
if "error" in execution_results[i]:
execution_results[i] = execution_results[i].replace("error", "error❗️")
yield ("regular", decoded_model_responses, execution_results, self.model_name)
count += 1
# Force quit after too many steps
if count > MAXIMUM_STEP_LIMIT:
force_quit = True
current_step_inference_log.append(
{
"role": "handler_log",
"content": f"Model has been forced to quit after {MAXIMUM_STEP_LIMIT} steps.",
}
)
break
# Add to the total list
all_model_response.append(current_turn_response)
all_inference_log.append(current_turn_inference_log)
total_input_token_count.append(current_turn_input_token_count)
total_output_token_count.append(current_turn_output_token_count)
total_latency.append(current_turn_latency)
if include_state_log:
state_log = []
for class_name, class_instance in involved_instances.items():
if class_name in STATELESS_CLASSES:
continue
class_instance = deepcopy(class_instance) # Avoid modification in future turns
state_log.append(
{
"role": "state_info",
"class_name": class_name,
"content": {
key: value
for key, value in vars(class_instance).items()
if not key.startswith("_")
},
}
)
all_inference_log.append(state_log)
if force_quit:
break
metadata = {
"input_token_count": total_input_token_count,
"output_token_count": total_output_token_count,
"latency": total_latency,
"inference_log": all_inference_log,
}
yield ("final", current_turn_response, inference_data, involved_instances)
def decode_ast(self, result, language="Python"):
# This method takes raw model output and convert it to standard AST checker input.
raise NotImplementedError
def decode_execute(self, result):
# This method takes raw model output and convert it to standard execute checker input.
raise NotImplementedError
#### FC methods ####
def _query_FC(self, inference_data: dict):
"""
Call the model API in FC mode to get the response.
Return the response object that can be used to feed into the decode method.
"""
raise NotImplementedError
def _pre_query_processing_FC(self, inference_data: dict, test_entry: dict) -> dict:
"""
Preprocess the testset entry before sending it to the model.
This includes transforming the input user message into the format expected by the model, and any other necessary preprocessing steps.
The inference_data dict is updated in place and returned.
"""
raise NotImplementedError
def _compile_tools(self, inference_data: dict, test_entry: dict) -> dict:
"""
Compile the tools from the test entry and add them to the inference data.
This method is used to prepare the tools for the model query in FC mode.
The inference_data dict is updated in place and returned.
"""
raise NotImplementedError
def _parse_query_response_FC(self, api_response: any) -> dict:
"""
Parses the raw response from the model API to extract the result, input token count, and output token count.
Args:
api_response (any): The raw response from the model API.
Returns:
A dict containing the following elements:
- model_responses (any): The parsed result that can be directly used as input to the decode method.
- input_token (int): The number of tokens used in the input to the model.
- output_token (int): The number of tokens generated by the model as output.
- tool_call_ids (list[str]): The IDs of the tool calls that are generated by the model. Optional.
- Any other metadata that is specific to the model.
"""
raise NotImplementedError
def add_first_turn_message_FC(
self, inference_data: dict, first_turn_message: list[dict]
) -> dict:
"""
Add the first turn message to the chat history.
"""
raise NotImplementedError
def _add_next_turn_user_message_FC(
self, inference_data: dict, user_message: list[dict]
) -> dict:
"""
[Only for multi-turn]
Add next turn user message to the chat history for query.
user_message is a list of 1 element, which is the user message.
"""
raise NotImplementedError
def _add_assistant_message_FC(
self, inference_data: dict, model_response_data: dict
) -> dict:
"""
Add assistant message to the chat history.
"""
raise NotImplementedError
def _add_execution_results_FC(
self, inference_data: dict, execution_results: list[str], model_response_data: dict
) -> dict:
"""
Add the execution results to the chat history to prepare for the next turn of query.
Some models may need to add additional information to the chat history, such as tool call IDs.
"""
raise NotImplementedError
#### Prompting methods ####
def _query_prompting(self, inference_data: dict):
"""
Call the model API in prompting mode to get the response.
Return the response object that can be used to feed into the decode method.
"""
raise NotImplementedError
def _pre_query_processing_prompting(self, test_entry: dict) -> dict:
"""
Preprocess the testset entry before sending it to the model.
Returns a dict that contains all the necessary information for the query method.
`tools` and `message` must be included in the returned dict.
Things like `system_prompt` and `chat_history` are optional, specific to the model.
"""
raise NotImplementedError
def _parse_query_response_prompting(self, api_response: any) -> dict:
"""
Parses the raw response from the model API to extract the result, input token count, and output token count.
Args:
api_response (any): The raw response from the model API.
Returns:
A dict containing the following elements:
- model_responses (any): The parsed result that can be directly used as input to the decode method.
- input_token (int): The number of tokens used in the input to the model.
- output_token (int): The number of tokens generated by the model as output.
- tool_call_ids (list[str]): The IDs of the tool calls that are generated by the model. Optional.
- Any other metadata that is specific to the model.
"""
raise NotImplementedError
def add_first_turn_message_prompting(
self, inference_data: dict, first_turn_message: list[dict]
) -> dict:
"""
Add the first turn message to the chat history.
"""
raise NotImplementedError
def _add_next_turn_user_message_prompting(
self, inference_data: dict, user_message: list[dict]
) -> dict:
"""
[Only for multi-turn]
Add next turn user message to the chat history for query.
user_message is a list of 1 element, which is the user message.
"""
raise NotImplementedError
def _add_assistant_message_prompting(
self, inference_data: dict, model_response_data: dict
) -> dict:
"""
Add assistant message to the chat history.
"""
raise NotImplementedError
def _add_execution_results_prompting(
self, inference_data: dict, execution_results: list[str], model_response_data: dict
) -> dict:
"""
Add the execution results to the chat history to prepare for the next turn of query.
Some models may need to add additional information to the chat history, such as tool call IDs.
"""
raise NotImplementedError
|