File size: 7,973 Bytes
970607e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from dc.conversation import conv_templates, SeparatorStyle
from dc.model.builder import load_pretrained_model
from dc.utils import disable_torch_init
from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from torch.utils.data import Dataset, DataLoader

from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


# Custom dataset class
class CustomDataset(Dataset):
    def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
        self.questions = questions
        self.image_folder = image_folder
        self.tokenizer = tokenizer
        self.image_processor = image_processor
        self.model_config = model_config

    def __getitem__(self, index):
        line = self.questions[index]
        image_file = line["image"]
        qs = line["text"]
        
        # self.model_config.mm_use_im_start_end=False
        if self.model_config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()
        
        # llama3 !!!!!
        # prompt += '<|start_header_id|>assistant<|end_header_id|>\n\n'
        # print([prompt])

        image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
        image_tensor = process_images([image], self.image_processor, self.model_config)[0]

        input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')

        return input_ids, image_tensor

    def __len__(self):
        return len(self.questions)


# DataLoader
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
    assert batch_size == 1, "batch_size must be 1"
    dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
    data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
    return data_loader


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name, load_8bit=args.load_8bit)

    terminators = [
            tokenizer.eos_token_id
        ]
    if args.conv_mode == 'llama_3':
        if tokenizer.unk_token is None:
            tokenizer.unk_token = "<|reserved_special_token_0|>"
        tokenizer.pad_token = tokenizer.unk_token
        terminators = [
            tokenizer.eos_token_id,
            tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]

    if args.projection_path is not None and os.path.exists(args.projection_path):
        print(f"Loading weights from {args.projection_path}")
        status = model.load_state_dict(torch.load(args.projection_path, map_location='cpu'), strict=False)
        if status.unexpected_keys:
            print(f"Unexpected Keys: {status.unexpected_keys}.\nThe Video-ChatGPT weights are not loaded correctly.")
        print(f"Weights loaded from {args.projection_path}")

    for n, p in model.named_parameters():
        if "model.local_enc.0.b1.conv1.conv.weight" in n:
            print(p[:5, :1])
            import time
            time.sleep(20)

    questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")

    if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
        args.conv_mode = args.conv_mode + '_mmtag'
        print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')

    data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)

    for (input_ids, image_tensor), line in tqdm(zip(data_loader, questions), total=len(questions)):
        idx = line["question_id"]
        cur_prompt = line["text"]

        input_ids = input_ids.to(device='cuda', non_blocking=True)
        # print(input_ids)

        # terminators = [
        # tokenizer.eos_token_id,
        # tokenizer.convert_tokens_to_ids("<|eot_id|>")
        # ]

        with torch.inference_mode():
            # outputs_ = model.generate(
            #     input_ids,
            #     max_new_tokens=256,
            #     eos_token_id=terminators,
            #     do_sample=True,
            #     temperature=0.6,
            #     top_p=0.9,
            # )
            output_ids = model.generate(
                input_ids,
                images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                eos_token_id=terminators,
                top_p=args.top_p,
                num_beams=args.num_beams,
                max_new_tokens=args.max_new_tokens,
                use_cache=True)

        
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
        # print(tokenizer.batch_decode(output_ids))
        # input_token_len = input_ids.shape[1]
        # n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        # if n_diff_input_output > 0:
        #     print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        # outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        # outputs = outputs.strip()

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
        # ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument('--load_8bit', type=bool, default=False)

    parser.add_argument("--max_new_tokens", type=int, default=128)
    parser.add_argument("--projection_path", type=str, required=False)
    args = parser.parse_args()

    eval_model(args)