Spaces:
Runtime error
Runtime error
File size: 4,975 Bytes
970607e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import re
import time
import argparse
from tqdm import tqdm
import sys
sys.path.append('../')
from utilities import *
# OpenAI
import openai
# load demo prompt
from prompts.ext_ans import demo_prompt
def verify_extraction(extraction):
extraction = extraction.strip()
if extraction == "" or extraction == None:
return False
return True
def create_test_prompt(demo_prompt, query, response):
demo_prompt = demo_prompt.strip()
test_prompt = f"{query}\n\n{response}"
full_prompt = f"{demo_prompt}\n\n{test_prompt}\n\nExtracted answer: "
return full_prompt
def extract_answer(response, problem, quick_extract=False):
question_type = problem['question_type']
answer_type = problem['answer_type']
choices = problem['choices']
query = problem['query']
pid = problem['pid']
if response == "":
return ""
if question_type == 'multi_choice' and response in choices:
return response
if answer_type == "integer":
try:
extraction = int(response)
return str(extraction)
except:
pass
if answer_type == "float":
try:
extraction = str(float(response))
return extraction
except:
pass
# quick extraction
if quick_extract:
print("Quickly extracting answer...")
# The answer is "text". -> "text"
try:
result = re.search(r'The answer is "(.*)"\.', response)
if result:
extraction = result.group(1)
return extraction
except:
pass
# general extraction
try:
full_prompt = create_test_prompt(demo_prompt, query, response)
extraction = get_chat_response(full_prompt, openai.api_key, openai.api_base, model=args.llm_engine)
return extraction
except Exception as e:
print(e)
print(f"Error in extracting answer for {pid}")
return ""
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input
parser.add_argument('--output_file', type=str, default='answer.json')
parser.add_argument('--response_label', type=str, default='response', help='response label for the input file')
# model
parser.add_argument('--llm_engine', type=str, default='gpt-4-0613', help='llm engine',
choices = ['gpt-3.5-turbo', 'gpt-3.5', 'gpt-4', 'gpt-4-0314', 'gpt-4-0613'])
parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
parser.add_argument('--quick_extract', action='store_true', help='use rules to extract answer for some problems')
parser.add_argument('--rerun', action='store_true', help='rerun the answer extraction')
# openai
parser.add_argument("--api_key", required=True, type=str, help="OpenAI API key")
parser.add_argument("--api_base", default=None, type=str, help="OpenAI API base")
# output
parser.add_argument('--save_every', type=int, default=10, help='save every n problems')
parser.add_argument('--output_label', type=str, default='', help='label for the output file')
args = parser.parse_args()
# args
label = args.response_label
result_file = args.output_file
if args.output_label != '':
output_file = result_file.replace('.json', f'_{args.output_label}.json')
else:
output_file = result_file
# read results
print(f"Reading {result_file}...")
try:
results = read_json(output_file)
except:
samples = [json.loads(line) for line in open(result_file)]
results = {}
for sample in samples:
results[sample['pid']] = sample
# full pids
full_pids = list(results.keys())
if args.number > 0:
full_pids = full_pids[:min(args.number, len(full_pids))]
print("Number of testing problems:", len(full_pids))
# test pids
if args.rerun:
test_pids = full_pids
else:
test_pids = []
for pid in full_pids:
# print(pid)
if 'extraction' not in results[pid] or not verify_extraction(results[pid]['extraction']):
test_pids.append(pid)
test_num = len(test_pids)
print("Number of problems to run:", test_num)
# print(test_pids)
# openai api
openai.api_key = args.api_key # Your API key here
if args.api_base:
openai.api_base = args.api_base # Your API base here
# tqdm, enumerate results
for i, pid in enumerate(tqdm(test_pids)):
problem = results[pid]
assert label in problem
response = problem[label]
extraction = extract_answer(response, problem, args.quick_extract)
results[pid]['extraction'] = extraction
if i % args.save_every == 0 or i == test_num - 1:
print(f"Saving results to {output_file}...")
save_json(results, output_file)
print(f"Results saved.")
|