File size: 4,453 Bytes
86d2765
64212e0
 
 
 
 
 
 
86d2765
 
64212e0
 
 
 
 
 
cbeaab6
 
 
64212e0
 
cbeaab6
 
 
64212e0
cbeaab6
64212e0
cbeaab6
 
64212e0
cbeaab6
 
 
 
 
 
 
 
 
 
64212e0
cbeaab6
 
64212e0
 
cbeaab6
64212e0
 
cbeaab6
 
 
 
 
 
 
 
64212e0
 
 
 
cbeaab6
 
 
 
 
 
 
 
 
 
 
 
64212e0
cbeaab6
 
 
 
64212e0
cbeaab6
 
 
 
64212e0
cbeaab6
e38e937
cbeaab6
 
 
64212e0
cbeaab6
 
 
 
 
 
 
 
64212e0
cbeaab6
 
 
 
 
 
 
 
 
 
 
 
 
 
64212e0
 
 
cbeaab6
 
 
 
 
 
 
 
64212e0
 
 
e9c0dec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
from huggingface_hub import hf_hub_download
from prediction import run_image_prediction
import torch
import torchvision.transforms as T
from celle.utils import process_image
from PIL import Image
from matplotlib import pyplot as plt


def gradio_demo(model_name, sequence_input, nucleus_image, protein_image):
    model = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="model.ckpt")
    config = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="config.yaml")
    hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="nucleus_vqgan.yaml")
    hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="threshold_vqgan.yaml")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if "Finetuned" in model_name:
        dataset = "OpenCell"

    else:
        dataset = "HPA"

    nucleus_image = process_image(nucleus_image, dataset, "nucleus")
    if protein_image:
        protein_image = process_image(protein_image, dataset, "protein")
        protein_image = protein_image > torch.median(protein_image)
        protein_image = protein_image[0, 0]
        protein_image = protein_image * 1.0
    else:
        protein_image = torch.ones((256, 256))

    threshold, heatmap = run_image_prediction(
        sequence_input=sequence_input,
        nucleus_image=nucleus_image,
        model_ckpt_path=model,
        model_config_path=config,
        device=device,
    )

    # Plot the heatmap
    plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
    plt.axis("off")

    # Save the plot to a temporary file
    plt.savefig("temp.png", bbox_inches="tight", dpi=256)

    # Open the temporary file as a PIL image
    heatmap = Image.open("temp.png")

    return (
        T.ToPILImage()(nucleus_image[0, 0]),
        T.ToPILImage()(protein_image),
        T.ToPILImage()(threshold),
        heatmap,
    )


with gr.Blocks() as demo:
    gr.Markdown("Select the prediction model.")
    gr.Markdown(
        "CELL-E_2_HPA_480 is a good general purpose model for various cell types using ICC-IF."
    )
    gr.Markdown(
        "CELL-E_2_HPA_Finetuned_480 is finetuned on OpenCell and is good more live-cell predictions on HEK cells."
    )
    with gr.Row():
        model_name = gr.Dropdown(
            ["CELL-E_2_HPA_480", "CELL-E_2_HPA_Finetuned_480"],
            value="CELL-E_2_HPA_480",
            label="Model Name",
        )
    with gr.Row():
        gr.Markdown(
            "Input the desired amino acid sequence. GFP is shown below by default."
        )

    with gr.Row():
        sequence_input = gr.Textbox(
            value="MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
            label="Sequence",
        )
    with gr.Row():
        gr.Markdown(
            "Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)"
        )
        gr.Markdown("The protein image is optional and is just used for display.")

    with gr.Row().style(equal_height=True):
        nucleus_image = gr.Image(
            type="pil",
            label="Nucleus Image",
            image_mode="L",
        )

        protein_image = gr.Image(type="pil", label="Protein Image (Optional)")

    with gr.Row():
        gr.Markdown("Image predictions are show below.")

    with gr.Row().style(equal_height=True):
        nucleus_image_crop = gr.Image(type="pil", label="Nucleus Image", image_mode="L")

        protein_threshold_image = gr.Image(
            type="pil", label="Protein Threshold Image", image_mode="L"
        )

        predicted_threshold_image = gr.Image(
            type="pil", label="Predicted Threshold image", image_mode="L"
        )

        predicted_heatmap = gr.Image(type="pil", label="Predicted Heatmap")
    with gr.Row():
        button = gr.Button("Run Model")

        inputs = [model_name, sequence_input, nucleus_image, protein_image]

        outputs = [
            nucleus_image_crop,
            protein_threshold_image,
            predicted_threshold_image,
            predicted_heatmap,
        ]

        button.click(gradio_demo, inputs, outputs)

demo.launch(enable_queue=True)