File size: 6,180 Bytes
5d2263b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from functools import partial

import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange

from celle.reversible import SequentialSequence
from celle.attention import Attention

from rotary_embedding_torch import RotaryEmbedding, broadcat
from celle.utils import exists, default, cast_tuple

# https://arxiv.org/abs/2103.17239
class LayerScale(nn.Module):
    def __init__(self, dim, depth, fn):
        super().__init__()
        if depth <= 18:
            init_eps = 0.1
        elif depth > 18 and depth <= 24:
            init_eps = 1e-5
        else:
            init_eps = 1e-6

        scale = torch.zeros(1, 1, dim).fill_(init_eps)
        self.scale = nn.Parameter(scale)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) * self.scale


# layer norm
class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.norm_out = nn.Identity()
        self.fn = fn

    def forward(self, x, **kwargs):
        x = self.norm(x)
        x = self.fn(x, **kwargs)
        return self.norm_out(x)


# feed forward


class GEGLU(nn.Module):
    def forward(self, x):
        x, gates = x.chunk(2, dim=-1)
        return x * F.gelu(gates)


class FeedForward(nn.Module):
    def __init__(self, dim, dropout=0.0, mult=4.0):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, dim * mult * 2),
            GEGLU(),
            nn.Dropout(dropout),
            nn.Linear(dim * mult, dim),
        )

    def forward(self, x):
        return self.net(x)


# main transformer class
class Transformer(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth,
        seq_len,
        causal=True,
        heads=8,
        dim_head=64,
        ff_mult=4,
        attn_dropout=0.0,
        ff_dropout=0.0,
        image_fmap_size=None,
        num_images=None,
        stable=False,
        rotary_emb=True,
    ):
        super().__init__()
        layers = nn.ModuleList([])

        self.seq_len = seq_len
        self.image_fmap_size = image_fmap_size

        for ind in range(depth):
            
            attn_class = partial(Attention, stable=stable)

            attn = attn_class(
                dim,
                causal=causal,
                seq_len=seq_len,
                heads=heads,
                dim_head=dim_head,
                dropout=attn_dropout,
            )

            ff = FeedForward(dim, mult=ff_mult, dropout=ff_dropout)

            layers.append(
                nn.ModuleList(
                    [
                        LayerScale(
                            dim, ind + 1, PreNorm(dim, attn)
                        ),
                        LayerScale(
                            dim, ind + 1, PreNorm(dim, ff)
                        ),
                    ]
                )
            )

        # pairs arguments with attention layer
        route_attn = ((True, False),) * depth
        attn_route_map = {
            "mask": route_attn,
            "rotary_pos_emb": route_attn,
        }

        self.layers = SequentialSequence(layers, args_route=attn_route_map)

        # generate positional embeddings for rotary

        pos_emb = None
        if rotary_emb:
            rot_dim = dim_head // 3
            img_seq_len = ((image_fmap_size // num_images) ** 2) * num_images

            text_len = seq_len - img_seq_len + 1

            text_pos_emb = RotaryEmbedding(dim=rot_dim)

            img_axial_pos_emb = RotaryEmbedding(dim=rot_dim, freqs_for="pixel")

            text_freqs = text_pos_emb(torch.arange(text_len))

            img_to_text_freqs = text_pos_emb(
                torch.full((img_seq_len,), 8192)
            )  # image is given a position far away from text

            text_freqs = torch.cat((text_freqs, img_to_text_freqs), dim=0)

            img_freqs_axial = img_axial_pos_emb(
                torch.linspace(-1, 1, steps=image_fmap_size)
            )

            if num_images > 1:
                split_img_freqs_axial = torch.split(
                    img_freqs_axial, image_fmap_size // num_images, dim=0
                )

                split_img_freqs = [
                    broadcat(
                        (
                            rearrange(img_freqs_axial_per_image, "i d -> i () d"),
                            rearrange(img_freqs_axial_per_image, "j d -> () j d"),
                        ),
                        dim=-1,
                    )
                    for img_freqs_axial_per_image in split_img_freqs_axial
                ]

                split_img_freqs = [
                    rearrange(img_freqs_per_image, "h w d -> (h w) d")
                    for img_freqs_per_image in split_img_freqs
                ]

                # concat per image-image_freqs

                img_freqs = torch.cat(split_img_freqs, dim=0)

            elif num_images == 1:
                img_freqs = broadcat(
                    (
                        rearrange(img_freqs_axial, "i d -> i () d"),
                        rearrange(img_freqs_axial, "j d -> () j d"),
                    ),
                    dim=-1,
                )

                img_freqs = rearrange(img_freqs, "h w d -> (h w) d")

            else:
                assert False, "num_images must be int greater than 0"
            self.img_axial_pos_emb = img_axial_pos_emb
            self.text_pos_emb = text_pos_emb

            text_axial_freqs = img_axial_pos_emb(
                torch.full((text_len,), -10.0)
            )  # text is given a position of -10 apart from the image axial positions, which is from range [-1, 1]

            text_axial_freqs = torch.cat((text_axial_freqs, text_axial_freqs), dim=-1)

            img_freqs = torch.cat((text_axial_freqs, img_freqs), dim=0)

            pos_emb = torch.cat((text_freqs, img_freqs), dim=-1)

            pos_emb = rearrange(pos_emb, "n d -> () n d")

        self.register_buffer("pos_emb", pos_emb)

    def forward(self, x, **kwargs):
        return self.layers(x, rotary_pos_emb=self.pos_emb, **kwargs)