Spaces:
Sleeping
Sleeping
File size: 1,402 Bytes
e81879a 3559626 05c62eb dc4e72f e81879a dc4e72f ba8079a d08200f 2679436 c7429e9 94fe01a 05c62eb ba8079a dc4e72f d08200f 84edf89 d08200f 84edf89 d08200f 84edf89 d08200f 4ddb435 fb887f7 dc4e72f 07505b0 dc4e72f 2dfea56 ad0e7fc 4ddb435 05c62eb ba540df 05c62eb 8862ebf 05c62eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
import tensorflow as tf
import numpy as np
import os
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.utils import load_img
# Charger le modèle
model = load_model('model_multi.h5')
def format_decimal(value):
decimal_value = format(value, ".2f")
return decimal_value
def detect(img):
img = np.expand_dims(img, axis=0)
img = img/255
prediction = model.predict(img)[0]
# if prediction[0] <= 0.80:
# return "Pneumonia Detected!"
# return "Pneumonia Not Detected!"
if format_decimal(prediction[0]) >= "0.5":
return "Risque d'infection bactérienne"
if format_decimal(prediction[1]) >= "0.5":
return "Poumon sain"
if format_decimal(prediction[2]) >= "0.5":
return "Risque d'infection biologique"
# result = detect(img)
# print(result)
os.system("tar -zxvf examples.tar.gz")
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',]
input = gr.inputs.Image(shape=(100,100))
title = "PneumoDetect: Detection de pneumonie par x-ray"
iface = gr.Interface(fn=detect, inputs=input, outputs="text",examples = examples, examples_per_page=20, title=title)
iface.launch(inline=False)
|